PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and effect of static eccentricity fault on performance indicators of a synchronous reluctance motor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fault diagnosis and condition monitoring of synchronous machines running under load is a key determinant of their lifespan and performance. Faults such as broken rotor bars, bent shafts and bearing issues lead to eccentricity faults. These faults if not monitored may lead to repair, replacement and unforeseen loss of income. Researchers who attempted to investigate this kind of machine stopped at characterizing and deduced ways, types and effects of rotor eccentricity fault on the machine inductances using the winding function method. A modified closed-form analytical model of an eccentric synchronus reluctance motor (SynRM) is developed here taking into cognizance the machine dimensions and winding distribution for the cases of a healthy and unhealthy SynRM. This paper reports the study the SynRM under static rotor eccentricity using the developed analytical model and firming up the model with finite element method (FEM) solutions. These methods are beneficial as they investigated and presented the influence of the degrees of static eccentricity on the machine performance indicators such as speed, torque and the stator current and assess the extent to which the machine performance will deteriorate when running with and without load. The results show that static eccentricity significantly affects the machine’s performance as the degree of eccentricity increases.
Rocznik
Strony
829--848
Opis fizyczny
Bibliogr. 38 poz., fig., tab.
Twórcy
  • Department of Electrical and Electronics Engineering, Federal University of Agriculture 970101 Makurdi, Benue State, Nigeria
  • Department of Electrical Engineering, Maritime Academy 523101 Oron, Akwa Ibom State, Nigeria
  • Department of Industrial Technical Education, University of Nigeria 410001 Nsukka, Enugu State, Nigeria
  • Department of Civil Engineering, University of Nigeria 410001 Nsukka, Enugu State, Nigeria
  • Department of Electrical, Electronic and Telecommunications Engineering Botswana International University of Science and Technology Plot 10071 Boseja, Palapye, Botswana
Bibliografia
  • [1] Kiani M., Lee W-J., Kenarangui R., Fahimi B., Detection of Rotor Faults in Synchronous Generators, 2007 IEEE International Symposium on Diagnostics for Electric Machines, pp. 266–271 (2007), DOI:10.1109/DEMPED.2007.4393106.
  • [2] Ebrahimi B.M., Faiz J., Configuration Impacts on Eccentricity Fault Detection in Permanent Magnet Synchronous Motors, IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 903–906 (2012), DOI: 10.1109/TMAG.2011.2172977.
  • [3] Obe E.S., Binder A., Direct-phase-variable model of a synchronous reluctance motor including all slot and winding harmonics, Energy Conversion and Management, vol. 52, no. 1, pp. 284–291 (2011), DOI: 10.1016/j.enconman.2010.06.069.
  • [4] Obe E.S, Onwuka I.K., Modelling and performance of a self-excited two-phase reluctance generator, Nigerian Journal of Technology, vol. 30, no. 2, pp. 55–66 (2011).
  • [5] Hamiti T., Lubin T., Baghli L., Rezzoug A., Modeling of a synchronous reluctance machine accounting for space harmonics in view of torque ripple minimization, Mathematics and Computers in Simulation, vol. 81, no. 2, pp. 354–366 (2010), DOI: 10.1016/j.matcom.2010.07.024.
  • [6] Lin I.H., Hsieh M.F., Kuo H.F., Tsai M.C., Improved Accuracy for Performance Evaluation of Synchronous Reluctance Motor, IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1–4 (2015), DOI: 10.1109/TMAG.2015.2450255.
  • [7] Ojaghi M., Nasiri S., Modeling Eccentric Squirrel-Cage Induction Motors eith Slotting Effect and Saturable Teeth Reluctances, IEEE Transactions on Energy Conversion, vol. 29, no. 3, pp. 619–627 (2014), DOI: 10.1109/TEC.2014.2320823.
  • [8] Polat A., Yilmaz A., Ergene L.T., Investigation of The Effects of Eccentricity on Induction Motor via Multi-Resolution Wavelet Analysis, Electrica, vol. 18, pp. 187–197 (2014), DOI: 10.5152/iujeee.2018.1821.
  • [9] Silwal B., Rasilo P., Belahcen A., Arkkio A., Influence of the rotor eccentricity on the torque of a cage induction machine, Archives of Electrical Engineering, vol. 66, no. 2, pp. 383–396 (2017), DOI: 10.1515/aee-2017-0029.
  • [10] Karami M., Mariun N., Mehrjou M.R., Ab-Kadir M.Z.A., Misron N., Amran M., Radzi M., Static Eccentricity Fault Recognition in Three-Phase Line Start Permanent Magnet Synchronous Motor Using Finite Element Method, Mathematical Problems in Engineering, vol. 2014, article ID 132647 (2014), DOI: 10.1155/2014/132647.
  • [11] Jaeger M., Drichel P., Schröder M., Berroth J., Jacobs G., Hameyer K., On magnetization deviations as the dominant cause for vibration harmonics in the spectrum of a PMSM drive, Archives of Electrical Engineering, vol. 70, no. 3, pp. 719–730 (2021), DOI: 10.24425/aee.2021.137584.
  • [12] Huang Y., Guo B., Hemeida A., Sergeant P., Analytical Modeling of Static Eccentricities in Axial Flux Permanent-Magnet Machines with Concentrated Windings, Energies, vol. 9, no. 892, pp. 1–19 (2016), DOI: 10.3390/en9110892.
  • [13] Xiong G., Hou Y., Fang P., Du M., Stability and Synchronous Characteristics of Dual-Rotors Vibrating System Considering the Material Effects, Journal of Vibration Engineering and Technologies, vol. 10, pp. 1665–1678 (2022), DOI: 10.1007/s42417-022-00472-5.
  • [14] Taghipour Boroujeni S., Jalali P., Bianchi N., Analytical Modeling of No-Load Eccentric Slotted Surface-Mounted PM Machines: Cogging Torque and Radial Force, IEEE Transactions on Magnetics, vol. 53, no. 12, pp. 1–8 (2017), DOI: 10.1109/TMAG.2017.2748501.
  • [15] Hooshmandi H., Ebrahimi J.K., Davoudi A., Pouramin A., Analytical Derivation of Induction Motors Inductances under Eccentricity Conditions, Progress in Electromagnetics Research, vol. 60, pp. 95–110 (2014), DOI: 10.2528/PIERB14051704.
  • [16] Obe E.S., Direct computation of ac machine inductances based on winding function theory, Energy Conversion and Management, vol. 50, no. 3, pp. 539–542 (2009), DOI: 10.1016/j.enconman.2008.10.017.
  • [17] Akbari H., Milimonfared J., An evaluation of inductances of a salient pole synchronous machine under different axial eccentricity conditions, European Transactions on Electric Power, vol. 23, no. 4, pp. 1–16 (2012), DOI: 10.1002/etep.1613.
  • [18] Hamdani S., Touhami O., Ibtiouen R., Hasni M., Analytical evaluation of inductances for induction machine with dynamic eccentricity using MWFA and FE methods, Proc. – 2013, 9th IEEE International Symposium on Diagnostics Electric Machines, Power Electronics and Drives, SDEMPED 2013,pp. 420–427 (2013), DOI: 10.1109/DEMPED.2013.6645750.
  • [19] Serrano-Iribarnegaray L., Cruz-Romero P., Gomez-Exposito A., Critical Review of the Modified Winding Function Theory, Progress In Electromagnetics Research, vol. 133, pp. 515–534 (2013), DOI:10.2528/PIER12091301.
  • [20] Toliyat H.A., Al-Nuaim N.A., Simulation and Detection of Dynamic Synchronous Machines, IEEE Transactions on Industry Applications, vol. 35, no. 1, pp. 86–93 (1999), DOI: 10.1109/28.740849.
  • [21] Akbari H., An improved analytical model for salient pole synchronous machines under general eccentricity fault, Progress In Electromagnetics Research, vol. 49, pp. 389–409 (2013), DOI:10.2528/PIERB13010101.
  • [22] Akbari H., Analytical computation of reluctance synchronous machine inductances under different eccentricity faults, Progress in Electromagnetics Research, vol. 24, pp. 29–44 (2012), DOI: 10.2528/PIERM11102005.
  • [23] Hwang C.M.C., Chenga S.P., Chana C.K., Pan C.T., Chang T.Y., Comparison of performances between IPM and SPM motors with rotor eccentricity, Journal of Magnetism and Magnetic Materials, vol. 282, pp. 360–363 (2004), DOI: 10.1016/j.jmmm.2004.04.084.
  • [24] Wu X., Zhu Z.Q., Wu Z.Y., Liu T.Y., Li Y.X., Analysis and Suppression of Rotor Eccentricity Effects on Fundamental Model Based Sensorless Control of Permanent Magnet Synchronous Machine, IEEE Transactions on Industry Applications Analysis, vol. 9994, pp. 1–10 (2020), DOI: 10.1109/TIA.2020.2997297.
  • [25] Takahata R., Wakui S., Influence of Rotor Eccentricity on Vibration Characteristics of Permanent Magnet Synchronous Motor, IEEJ Journal of Industry Applications, vol. 8, no. 3, pp. 558–565 (2019), DOI: 10.1541/ieejjia.8.558.
  • [26] Iamamura B.A.T., Le-Menach Y., Tounzi A., Sadowski N., Guillot E., Study of static and dynamic eccentricities of a synchronous generator using 3-D FEM, IEEE Trans. Magnetics, vol. 45, no. 8, pp. 3516–3519 (2010), DOI: 10.1109/TMAG.2010.2043347.
  • [27] Faiz J., Pakdelian S., Finite Element Analysis of Switched Reluctance Motor under Dynamic Eccentricity Fault, IEEE Transactions on Magnetics, vol. 42, no. 8, pp. 2004–2008 (2006), DOI:10.1109/TMAG.2006.875997.
  • [28] Al-Nuaim N.A., Toliyat H.A., A Method for Dynamic Simulation and Detection of Dynamic AirGap Eccentricity in Synchronous Machines, 1997 IEEE International Electric Machines and Drives Conference Record, pp. MA2/5.1-MA2/5.3 (1997), DOI: 10.1109/IEMDC.1997.604067.
  • [29] Tootoonchian F., Abbaszadeh K., Ardebili M., A New Technique for Analysis of Static Eccentricity, Journal of Measurement Science Review, vol. 12, no. 1, pp. 14–20 (2012), DOI: 10.2478/v10048-012-0004-y.
  • [30] Bessous N., Zouzou S.E., Sbaa S., Static Eccentricity Fault Detection of Induction Motors using MVSA, MCSA and Discrete Wavelet Transform (DWT), The 5𝑡 ℎ International Conference on Electrical Engineering – Boumerdes (ICEE-B), Boumerdes, Algeria, October 29–31 (2017), DOI: 10.1109/ICEEB.2017.8192035.
  • [31] Wroński W., Sułowicz M., Dziechciarz A., Dynamic And Static Eccentricity Detection In Induction Motors In Transient States, Technical Transactions Electrical Engineering, pp. 171–193 (2015), DOI:10.4467/2353737XCT.15.095.3927.
  • [32] Aggarwal A., Strangas E.G., Review of Detection Methods of Static Eccentricity for Interior Permanent Magnet Synchronous Machine, Energies, vol. 12, no. 4105, pp. 1–20 (2019), DOI: 10.3390/en12214105.
  • [33] Dogan Z., Emeksiz C., Burak K., Gokrem L., The Static Eccentricity Fault Diagnosis in Time Domain at Line Start Permanent Magnet Synchronous Motor, Journal of New Results in Science, vol. 12, pp. 88–95 (2016).
  • [34] El M., Oumaamar K., Maouche Y., Boucherma M., Static air-gap eccentricity fault diagnosis using rotor slot harmonics in line neutral voltage of three-phase squirrel cage induction motor, Mechanical System Signal Process, vol. 84, pp. 584–597 (2017), DOI: 10.1016/j.ymssp.2016.07.016.
  • [35] Toliyat H.A., Arefeen M.S., Parlos A.G., A method for dynamic simulation of air-gap eccentricity in induction machines, IEEE Transactions on Industry Applications, vol. 32, no. 4, pp. 910–918 (1996), DOI: 10.1109/28.511649.
  • [36] Lipo T.A., Analysis of Synchronous Machines, New York: CRC Press (2017).
  • [37] Bouabid N., Moussa M.-A., Maouche Y., Khezzar A., The effect of closed loop control on diagnosticindices in different faults of squirrel cage induction motor, Archives of Electrical Engineering, vol. 70, no. 4, pp. 943–958 (2021), DOI: 10.24425/aee.2021.138271.
  • [38] Faiz J., Ebrahimi B.M., Valavi M., Mixed Eccentricity Fault Diagnosis In Salient-Pole Synchronous Generator Using Modified Winding Function Method, Progress In Electromagnetics Research B, vol. 11, pp. 155–172 (2009), DOI: 10.2.2528/PIERB08110903.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c375f12e-db58-47b2-9754-2abb9adaa185
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.