PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zmiana paradygmatu badań w spektroskopii mechanicznej ciał stałych i powstanie wysokorozdzielczej spektroskopii mechanicznej, HRMS

Autorzy
Identyfikatory
Warianty tytułu
EN
Paradigm-shifting research on mechanical spectroscopy of solids and pioneering development of high-resolution mechanical spectroscopy, HRMS
Języki publikacji
PL
Abstrakty
PL
Przedstawiono wybrane przykłady zastosowań spektroskopii mechanicznej w inżynierii materiałowej zwracając uwagę na wybrane aspekty historyczne dotyczące powstania i rozwoju tej metody badań. Zwrócono uwagę na zjawisko wolniejszej dyfuzji atomów węgla w skondensowanych atmosferach Cottrella w odkształconych stopach żelaza oraz odkrycie w 2018 roku nowego mechanizmu umocnienia stopów wysokoentropowych oraz badania odwracalnej przemiany martenzytycznej w stopach z pamięcią kształtu. Przedstawiono również wyniki eksperymentalne ilustrujące powstanie na Akademii Górniczo-Hutniczej w Krakowie wysokorozdzielczej spektroskopii mechanicznej HRMS.
EN
We present a brief review of selected applications of mechanical spectroscopy in Materials Science. Diffusion of carbon atoms in Cottrell atmosphere in deformed iron-based alloys is discussed. We then outline a new strengthening mechanism of high-entropy alloys discovered in 2018 and study of reversible martensitic transformation in shape memory alloys. Low-frequency mechanical loss spectra illustrate the advent of high-resolution mechanical spectroscopy, HRMS, developed at AGH University in Kraków.
Rocznik
Strony
87--98
Opis fizyczny
Bibliogr. 58 poz., rys.
Twórcy
  • AGH Akademia Górniczo-Hutnicza, Wydział Inżynierii Metali i Informatyki Przemysłowej, Katedra Metaloznawstwa i Metalurgii Proszków, al. Mickiewicza 30, 30-059 Kraków
Bibliografia
  • [1] Bonetti E. Campari E.G., Pasquini L., Savini L. 2001. "Automated resonant mechanical analyser".Review of Scientific Instruments 72 : 2148-2152.
  • [2] Aydiner E. 2019. "A simple model for stretched exponential relaxation in three-level jumping process". physica status solidi b 256 : 1900103.
  • [3] Barrand P., Leak G.M. 1963. "250oC Internal friction peak in Iron". Nature 198 (4877) : 279.
  • [4] Blackwell R. 1966. "Internal friction effects in tempered martensite". Nature 211 (5050) : 733-734.
  • [5] Blanter M.S., Granovskiy E.B., Magalas L.B. 2002. "Relaxation due to ‘Diffusion Under Stress’ of Interstitial Atoms in HCP Metals, Imperfections Interaction and Anelasticity Phenomena in Solids". Bulletin of TSU, Materials Science 3 : 41-46.
  • [6] Blanter M.S., Granovskiy E.B., Magalas L.B. 2004. "Interaction of Dissolved Atoms and Relaxation due to Interstitial Atoms in hcp Metals". Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 370 : 88-92.
  • [7] Blanter M.S., Magalas L.B. 2003. "Strain-Induced Interaction of Dissolved Atoms and Mechanical Relaxation in Solid Solutions. A Review". Solid State Phenomena 89 : 115-140.
  • [8] Blanter M.S., Magalas L.B. 2000. "Carbon - Substitutional Interaction in Austenite". Scripta Materialia 43 : 435-440.
  • [9] Blanter M.S., Granovskiy E.B., Magalas L.B. 2003. "Ordering and Strain-induced D-D Interaction in Lu-D". physica status solidi b 240 : 75-80.
  • [10] Bradfield G. 1951. "Internal friction of solids". Nature 167 (4260) : 1021-1023.
  • [11] Campari E.G., Amadori S., Bonetti E., Berti R., Montanari R. 2019. "Anelastic behavior of small dimensioned Aluminum". Metals 9(5) : 549.
  • [12] Chien Ch., Wu S-K., Chang S-H. 2014. "Damping Characteristics of Ti50Ni50-xCux (x=0∼30 at.%) shape memory alloys at low frequency". Materials 7 : 4574-14586.
  • [13] Chien Ch., Wu S-K., Chang S-H. 2015. "Damping Capacities of Ti50Ni50-xCux shape memory alloys measured under temperature, strain, and frequency sweeps". Materials Transactions 56(2) : 193-199.
  • [14] Damson B., Weller M., Feuerbacher M., Grushko B., Urban, K. 2000. Mechanical spectroscopy of quasicrystals". Journal of Alloys and Compounds 310 : 184-189.
  • [15] Debye P. 1929. Polar Molecules. New York: The Chemical Catalog Company, Inc.
  • [16] Gajda J., Sroka R. 2000. Pomiary kąta fazowego. Metody - Układy - Algorytmy. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademii Górniczo-Hutniczej im. St. Staszica w Krakowie.
  • [17] Gorczyca S., Magalas L.B. 1984. Internal Friction in Solids. Kraków: Wydawnictwo AGH
  • [18] Gremaud G., Bujard M., Benoit W. 1987. "The coupling technique - A 2-wave acoustic method for the study of dislocation dyna􀀐 mics". Journal of Applied Physics 61(5) : 1979-1805.
  • [19] Huang W.M., Ding Z., Wang C.C., Wei J., Zhao Y., Purnawali H. 2010. "Shape memory alloys". Materials Today 13(7-8) : 54-61.
  • [20] Jani J.M., Leary M., Subic A., Gibson M.A. 2014. "A review of shape memory alloy research, applications and opportunities". Materials Design 56 : 1078-1113.
  • [21] Jonscher A.K. 1977. "The ‘universal’ dielectric response". Nature 267 (5613) : 673-679.
  • [22] Koiwa M., Numakura, H. 2006. "The Snoek effect in ternary BCC alloys. A review". Solid State Phenomena 115 : 37-40.
  • [23] Lakes R.S. 2004. "Viscoelastic measurement techniques". Review of Scientific Instruments 75 (4) : 797-810.
  • [24] Zhifeng Lei, Xiongjun Liu, Yuan Wu, Hui Wang, Suihe Jiang, Shudao Wang, Xidong Hui, Yidong Wu, Baptiste Gault, Paraskevas Kontis, Dierk Raabe, Lin Gu, Qinghua Zhang, Houwen Chen, Hongtao Wang, Jiabin Liu, Ke An, Qiaoshi Zeng, Tai-Gang Nieh, Zhaoping Lu. 2018. "Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes". Nature 563 : 546-550.
  • [25] Li H.F., Qiu K.J., Zhou F.Y., Li L., Zheng Y.F. 2016. "Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application". Nature Sci. Rep. 6 : 37475.
  • [26] Magalas L.B. 1990. Mechanical Spectroscopy. Lausanne: Ecole Polytechnique Fédérale de Lausanne, Switzerland.
  • [27] Magalas L.B. 1993. Mechanical Spectroscopy I. Materials Science Forum 119-121 : 743-850.
  • [28] Magalas L.B. (ed.). 2003. Mechanical Spectroscopy II. Zurich: Scitec Publications.
  • [29] Darinskii B.M., Magalas L.B. (ed.). 2006. Mechanical Spectroscopy III, Uetikon-Zurich: Trans Tech Publications Ltd.
  • [30] Magalas L.B. 2006. "Mechanical Spectroscopy: Fundamen 2020 r. HUTNIK-WIADOMOŚCI HUTNICZE s. 98 tals". Solid State Phenomena 115 : 1-22.
  • [31] Magalas L.B. 2009. "Mechanical spectroscopy, internal friction and ultrasonic attenuation: Collection of works". Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 521-522 : 405-415.
  • [32] Magalas L.B., Majewski M. 2015. "Hilbert-twin - A novel Hilbert transform-based method to compute envelope of free decaying oscillations embedded in noise, and the logarithmic decrement in high-resolution mechanical spectroscopy HRMS". Arch. Metall. Mater. 60 : 1091-1098.
  • [33] Magalas L.B., Gorczyca S. 1993. Internal Friction and Ultrasonic Attenuation in Solids including High TC Superconductors. Materials Science Forum 119-121 : 1-733.
  • [34] Magalas L.B. 1996. "The Snoek-Köster Relaxation. New Insights - New Paradigms". Journal de Physique IV 6 (C8) : 163-172.
  • [35] Magalas L.B., Ngai K.L. 1997. Critical Experimental Data on the Snoek-Köster Relaxation and Their Explanation by the Coupling Model. W M3DIII: Mechanics and Mechanisms of Material Damping, American Society for Testing and Materials, ASTM STP 1304 : 189-203. A. Wolfenden, V.K. Kinra, Eds., American Society for Testing and Materials, USA.
  • [36] Magalas L.B. 2001. "Diffusion in the Cottrell Atmosphere". Defect and Diffusion Forum 194-199 : 115-120.
  • [37] Magalas L.B., Majewski M. 2009. "Ghost internal friction peaks, ghost asymmetrical peak broadening and narrowing. Misunder standings, consequences and solution". Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 521-522 : 384-388.
  • [38] Magalas L.B. 2015. "Development of high-resolution mechanical spectroscopy, HRMS: status and perspectives. HRMS coupled with a laser dilatometer". Arch. Metall. Mater. 60 : 2069-2076.
  • [39] Magalas L.B., Majewski M. 2016. "Nowe techniki wysoko rozdzielczej spektroskopii mechanicznej", Sprawozdanie z prac statutowych nr 11.11.110.299.
  • [40] Magalas L.B. 2019. "Nowe techniki wysokorozdzielczej spektroskopii mechanicznej", Sprawozdanie z prac statutowych nr 11.11.110.299.
  • [41] Mason W. P. 1958. Physical Acoustics and the Properties of Solids. Princeton, New Jersey, Van Nostrand Company.
  • [42] Mason W.P. 1971. "Internal Friction in Moon and Earth Rocks". Nature 234 (5330) : 461-463.
  • [43] Ngai K.L., Jonscher A.K., White C.T. 1979. "On the origin of the universal dielectric response in condensed matter". Nature 277 (5693) : 185-189.
  • [44] Ngai K.L., Wang Y.N., Magalas L.B. 1994. "Theoretical Basis and General Applicability of the Coupling Model to Relaxations in Coupled Systems". Journal of Alloys and Compounds 211/212 : 327-332.
  • [45] Nowick A.S., Berry B.S. 1972. Anelastic Relaxation in Crystalline Solids, New York and London: Academic Press.
  • [46] Numakura, H., Koiwa, M. 1996. "The Snoek relaxation in dilute ternary bcc alloys. A review". Journal de Physique IV, 6(C8) : 97-106.
  • [47] Otsuka K., Ren X. 2005. "Physical metallurgy of Ni-Ti-based shape memory alloys". Progress in Materials Science 50 : 511-67
  • [48] Rosenfield A.R. 1962. "250ºC Internal friction peak in Iron". Nature 196 (4859) : 1083.
  • [49] Rosenfield A.R. 1963. "250oC Internal friction peak in Iron". Nature 198 (4877) : 279-280.
  • [50] Sinning H.-R. 2006. "Mechanical spectroscopy of quasicrystals". Solid State Phenomena 115 : 25-36.
  • [51] Snoek J. 1941. "Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron". Physica 8 : 711-733.
  • [52] Weller M., Wegst U.G.K. 2009. "Fe-C Snoek peak in iron and stony meteorites: Metallurgical and cosmological aspects". Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 521-522 : 39-42.
  • [53] Weller M. 2006. "The Snoek relaxation in bcc metals - From steel wire to meteorites". Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 442 : 21-30.
  • [54] Wert C., Zener C. 1949. "Interstitial Atomic Diffusion Coefficients". Physical Review 76(8) : 1169-1175.
  • [55] Wert C. 1972. "Anelasticity". Nature 240 (5376) : 111.
  • [56] Zener C.M. 1946. "Kinetics of the Decomposition of Austenite". Transactions of the American Institute of Mining and Metallurgical Engineers 167 : 550-595.
  • [57] Zener C.M. 1948. Elasticity and Anelasticity of Metals. The University of Chicago Press, Chicago, Illinois.
  • [58] Zener C., Hollomon J.H. 1944. "Effect of Strain Rate Upon Plastic Flow of Steel". Journal of Applied Physics 15 : 22-32. Zhong N., Wang X.D., Wang L., Rong Y.H. 2009. "Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process". Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 506(1-2) : 111-116.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c373b5b3-7a39-4fe1-97c3-087b5ecea067
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.