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Abstract. The purpose of this paper is to give general solutions of linear difference equations
which are related to the Euler-Cauchy differential equation y′′ +(λ/t2)y = 0 or more general
linear differential equations. We also show that the asymptotic behavior of solutions of
the linear difference equations are similar to solutions of the linear differential equations.
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1. INTRODUCTION

In this paper, we consider linear difference equations which are related to the
Euler-Cauchy differential equation

y′′ + λ

t2
y = 0, t > 0, (1.1)

or the more general linear differential equation

y′′ +





1
4

m−1∑

k=1

(
k−1∏

i=0
logi(t)

)−2

+ λ

(
m−1∏

i=0
logi(t)

)−2


 y = 0, t > tm−1, (1.2)

where λ > 0, log0(t) = t and logm(t) = log(logm−1(t)), t0 = 0 and tm = exp(tm−1)
for m ∈ N. Note that the function logm(t) is positive for t > tm. Moreover, notice
that we have adopted the notation

∑k
i=j ai = 0 and

∏k
i=j ai = 1 if j > k. Then it is

easy to check that equation (1.2) with m = 1 becomes equation (1.1). Furthermore,
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it is known that equation (1.2) with m = 2 is called the Riemann-Weber version of
the Euler type differential equation (see [8]).

By using the Liouville transformation s = log t, u(s) = t−1/2y(t) successively,
equation (1.2) is transformed into equation (1.1). Thus, we can get general solutions
of equation (1.2) (for example, see [6, 8, 13,14,16]).

Theorem 1.1. Let m ∈ N. Then equation (1.2) has the general solution

y(t) =





(
m−2∏

k=0
logk(t)

)1/2

{K1(logm−1(t))z +K2(logm−1(t))1−z} if λ 6= 1
4 ,

(
m−1∏

k=0
logk(t)

)1/2

{K3 +K4 logm(t)} if λ = 1
4 ,

where Ki (i = 1, 2, 3, 4) are arbitrary constants and z is the root of the characteristic
equation

z2 − z + λ = 0. (1.3)

As for linear difference equations which are related to equation (1.1), we can
consider various types. But, from a viewpoint of general solutions, we choose the
difference equation

∆2x(n) + λ

n(n+ 1)x(n) = 0, n ∈ N, (1.4)

where ∆x(n) = x(n + 1) − x(n), ∆2x(n) = ∆(∆x(n)). Note that equation (1.4) has
the general solution

x(n) =





K1

n−1∏

j=n0

(
1 + z

j

)
+K2

n−1∏

j=n0

(
1 + 1− z

j

)
if λ 6= 1

4 ,

n−1∏

j=n0

(
1 + 1

2j

){
K3 +K4

n−1∑

k=n0

2
2k + 1

}
if λ = 1

4 ,

where z satisfies (1.3) (for example, see [1, 4] and [15, Appendix]). However, since
we have not found a transformation such as the Liouville transformation, it is not
easy to get linear difference equations which correspond to equation (1.2) and which
have general solutions. Here a natural question now arises. What is the best difference
equation which corresponds to equation (1.2)? The purpose of this paper is to answer
the question.

This paper is organized as follows. In Section 2, we will construct discrete functions
such as the logarithm function. In Section 3, we give linear difference equations which
correspond to equation (1.2) and solve them explicitly. Finally, in Section 4, we discuss
the oscillatory behavior of their solutions as n→∞.
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Remark 1.2. From the general solution of equation (1.4), we see that λ > 1/4 is
necessary and sufficient for all nontrivial solutions of equation (1.4) to be oscillatory
(see [15]). Here a function x(n) is said to be oscillatory if it is neither eventually
positive nor eventually negative, otherwise it is said to be nonoscillatory. As another
type difference equation which corresponds to equation (1.1), we can consider the
linear difference equation

∆2x(n) + λ

(n+ 1)2x(n+ 1) = 0. (1.5)

According to Zhang and Cheng [17], without using general solutions, they showed
that λ > 1/4 is necessary and sufficient for all nontrivial solutions of equation (1.5)
to be oscillatory. Note that we can use Sturm’s comparison theorem for equation
(1.5) because it is self-adjoint (see [9]). Moreover, we see that advanced results in this
direction can be found in [2, 5, 7, 10–12] and the references contained therein.

2. LOGARITHM LIKE FUNCTIONS

To begin with, we introduce some functions such as the function logk(t). Define

Lm(n) =
m−1∏

k=0
lk(n), m ∈ N,

where lm(n) is positive and satisfies

∆l0(n) = 1 and ∆lm(n) =
(
lm−1(n)

∆lm−1(n) + 1
2

)−1
.

Remark 2.1. For any m ∈ N, the function lm(n) is increasing because ∆lm(n)
represents as

∆lm(n) = 2∆lm−1(n)
2lm−1(n) + ∆lm−1(n) =

m−1∏

k=0

2
lk(n) + lk(n+ 1) > 0. (2.1)

In this section, we prepare some lemmas which are useful in proving our results.

Lemma 2.2. For any m ∈ N,

∆lm(n) =
(
Lm(n) + 1

2

m∑

k=1

Lm(n)
Lk(n)

)−1

, (2.2)

and
∆Lm(n) = 1

2

m∑

k=1

(
Lm(n+ 1)
Lk(n+ 1) + Lm(n)

Lk(n)

)
. (2.3)



392 Akane Hongyo and Naoto Yamaoka

Proof. We first show (2.2). Since

∆l1(n) =
(
l0(n) + 1

2

)−1
=
(
L1(n) + 1

2

1∑

k=1

L1(n)
Lk(n)

)−1

,

(2.2) with m = 1 holds. Suppose that (2.2) with m = p holds. Then we have

∆lp+1(n) =
(
lp(n)

∆lp(n) + 1
2

)−1
=
{
lp(n)

(
Lp(n) + 1

2

p∑

k=1

Lp(n)
Lk(n)

)
+ 1

2

}−1

=
(
Lp+1(n) + 1

2

p∑

k=1

Lp+1(n)
Lk(n) + 1

2
Lp+1(n)
Lp+1(n)

)−1

=
(
Lp+1(n) + 1

2

p+1∑

k=1

Lp+1(n)
Lk(n)

)−1

,

and therefore, (2.2) with m = p+ 1 holds.
We next show (2.3). Since ∆L1(n) = ∆l0(n) = 1, (2.3) with m = 1 holds. Suppose

that (2.3) with m = p holds. Then, using (2.2), we have

∆Lp+1(n) =∆(lp(n)Lp(n)) = ∆lp(n)Lp(n) + lp(n+ 1) ∆Lp(n)

=∆lp(n)Lp(n) + lp(n+ 1)
2

p∑

k=1

(
Lp(n+ 1)
Lk(n+ 1) + Lp(n)

Lk(n)

)

=∆lp(n)Lp(n) + 1
2

p∑

k=1

(
Lp+1(n+ 1)
Lk(n+ 1) + Lp(n)(lp(n) + ∆lp(n))

Lk(n)

)

=∆lp(n)Lp(n) + 1
2

p∑

k=1

(
Lp+1(n+ 1)
Lk(n+ 1) + Lp+1(n)

Lk(n)

)
+ ∆lp(n)

2

p∑

k=1

Lp(n)
Lk(n)

=∆lp(n)
(
Lp(n) + 1

2

p∑

k=1

Lp(n)
Lk(n)

)
+ 1

2

p∑

k=1

(
Lp+1(n+ 1)
Lk(n+ 1) + Lp+1(n)

Lk(n)

)

=1 + 1
2

p∑

i=1

(
Lp+1(n+ 1)
Li(n+ 1) + Lp+1(n)

Li(n)

)

=1
2

p+1∑

k=1

(
Lp+1(n+ 1)
Lk(n+ 1) + Lp+1(n)

Lk(n)

)
,

and therefore, (2.3) with m = p+ 1 holds.

Lemma 2.3. Let k ∈ N ∪ {0}. Then there exists C > 1 such that

|lk(n)− logk(n)| < C (2.4)

for n sufficiently large.
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Proof. We use the mathematical induction on k. Since l0(n) = n+ c, (2.4) with k = 0
holds. Assume that (2.4) holds for 0 ≤ i ≤ k. Then there exists n1 ∈ N such that

0 < 2(logi(n)− C) ≤ 2li(n) ≤ li(n) + li(n+ 1) ≤ 2li(n+ 1) ≤ 2(logi(n+ 1) + C)

for n ≥ n1. Hence we have
n−1∑

j=n1

k∏

i=0

1
logi(j + 1) + C

≤
n−1∑

j=n1

k∏

i=0

2
li(j) + li(j + 1) ≤

n−1∑

j=n1

k∏

i=0

1
logi(j)− C

for n ≥ n1. Let log0(t;α) = t+α and logm(t;α) = log(logm−1(t;α)+α), where α ∈ R.
Then, using equality (2.1) and the inequalities

n−1∑

j=n1

k∏

i=0

1
logi(j)− C

≤
n∫

n1

k∏

i=0

1
logi(t− 1)− C dt ≤

n∫

n1

k∏

i=0

1
logi(t;−C)− C dt

= logk+1(n;−C)− logk+1(n1;−C) ≤ logk+1(n),
n−1∑

j=n1

k∏

i=0

1
logi(j + 1) + C

≥
n∫

n1

k∏

i=0

1
logi(t+ 1) + C

dt ≥
n∫

n1

k∏

i=0

1
logi(t;C) + C

dt

= logk+1(n;C)− logk+1(n1;C)
≥ logk+1(n)− logk+1(n1;C),

we obtain

logk+1(n)− logk+1(n1;C) ≤ lk+1(n)− lk+1(n1) ≤ logk+1(n).

Thus we conclude that

|lk+1(n)− logk+1(n)| ≤ max{lk+1(n1), |lk+1(n1)− logk+1(n1;C)|},

that is, (2.4) with k + 1 holds. This completes the proof.

Remark 2.4. From Lemma 2.3, for any k ∈ N ∪ {0}, lk(n)→∞ as n→∞.

3. THE MAIN RESULT

Let us consider the linear difference equation

∆2x(n) +
{

1
4

m−1∑

k=1

1
Lk(n)Lk(n+ 1) + λ

Lm(n)Lm(n+ 1)

}
x(n) = 0. (3.1)

This equation can regard as a difference equation which correspond to linear differ-
ential equation (1.2). In fact, if m = 1, then equation (3.1) becomes the difference
equation

∆2x(n) + λ

l0(n)l0(n+ 1)x(n) = 0,
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and therefore, this equation includes equation (1.4). Moreover, in casem = 2, equation
(3.1) reduces the equation

∆2x(n) +
{

1
4 l0(n) l0(n+ 1) + λ

l0(n) l0(n+ 1) l1(n) l1(n+ 1)

}
x(n) = 0,

which corresponds to Riemann-Weber version of the Euler type differential equation.
Let us consider the function ξm(n, µ) defined by

ξm(n, µ) =
n−1∏

j=n0

(
1 + 1

2

m−1∑

k=1

1
Lk(j) + µ

Lm(j)

)
.

Then we get general solutions of equation (3.1). Our main result is as follows.

Theorem 3.1. Equation (3.1) has the general solution

x(n) =
{
K1ξm(n, z) +K2ξm(n, 1− z) if λ 6= 1/4,
ξm(n, 1/2) {K3 +K4 lm(n)} if λ = 1/4,

where Ki (i = 1, 2, 3, 4) are arbitrary constants and z satisfies (1.3).

Proof. Let x(n) = ξm(n, z). Then x(n) satisfies

∆x(n) =
(

1
2

m−1∑

k=1

1
Lk(n) + z

Lm(n)

)
x(n),

and therefore, by using (2.3), we have

∆2x(n) =
{

1
2

m−1∑

k=1
∆
(

1
Lk(n)

)
+ z∆

(
1

Lm(n)

)}
x(n)

+
(

1
2

m−1∑

k=1

1
Lk(n+ 1) + z

Lm(n+ 1)

)
∆x(n)

=
{

1
2

m−1∑

k=1
∆
(

1
Lk(n)

)
+ z∆

(
1

Lm(n)

)}
x(n)

+
(

1
2

m−1∑

k=1

1
Lk(n+ 1) + z

Lm(n+ 1)

)(
1
2

m−1∑

k=1

1
Lk(n) + z

Lm(n)

)
x(n)

=
[
−1

2

m−1∑

k=1

∆Lk(n)
Lk(n)Lk(n+ 1) − z

∆Lm(n)
Lm(n)Lm(n+ 1)

+ 1
4

(
m−1∑

k=1

1
Lk(n+ 1)

)(
m−1∑

k=1

1
Lk(n)

)
+ z

2Lm(n)

m−1∑

k=1

1
Lk(n+ 1)
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+ z

2Lm(n+ 1)

m−1∑

k=1

1
Lk(n) + z2

Lm(n)Lm(n+ 1)

]
x(n)

=
[{
−1

2

m−1∑

k=1

∆Lk(n)
Lk(n)Lk(n+ 1) + 1

4

(
m−1∑

k=1

1
Lk(n+ 1)

)(
m−1∑

k=1

1
Lk(n)

)}

+
{
−∆Lm(n) + 1

2

m−1∑

k=1

(
Lm(n+ 1)
Lk(n+ 1) + Lm(n)

Lk(n)

)}
z

Lm(n)Lm(n+ 1)

+ z2

Lm(n)Lm(n+ 1)

]
x(n)

=−
[{

1
2

m−1∑

k=1

∆Lk(n)
Lk(n)Lk(n+ 1) −

1
4

(
m−1∑

k=1

1
Lk(n+ 1)

)(
m−1∑

k=1

1
Lk(n)

)}

+ z − z2

Lm(n)Lm(n+ 1)

]
x(n)

=−
{

1
4

m−1∑

k=1

1
Lk(n)Lk(n+ 1) + z − z2

Lm(n)Lm(n+ 1)

}
x(n).

Here the last equality is calculated as follows:

1
2

m−1∑

k=1

∆Lk(n)
Lk(n)Lk(n+ 1) −

1
4

(
m−1∑

k=1

1
Lk(n+ 1)

)(
m−1∑

k=1

1
Lk(n)

)

= 1
2

m−1∑

k=1

∆Lk(n)
Lk(n)Lk(n+ 1)

− 1
4

m−1∑

k=1





1
Lk(n)Lk(n+ 1) +

k−1∑

j=1

(
1

Lk(n)Lj(n+ 1) + 1
Lj(n)Lk(n+ 1)

)


= 1
4

m−1∑

k=1





2∆Lk(n)− 1
Lk(n)Lk(n+ 1) −

1
Lk(n)Lk(n+ 1)

k−1∑

j=1

(
Lk(n+ 1)
Lj(n+ 1) + Lk(n)

Lj(n)

)


= 1
4

m−1∑

k=1

{
2∆Lk(n)− 1
Lk(n)Lk(n+ 1) −

2∆Lk(n)− 2
Lk(n)Lk(n+ 1)

}
= 1

4

m−1∑

k=1

1
Lk(n)Lk(n+ 1) .

Hence we get the characteristic equation (1.3). Note that if z is a root of (1.3), 1−z is
also a root of (1.3).

In case λ 6= 1/4, ξm(n, z) and ξm(n, 1 − z) are linearly independent solutions of
equation (3.1). In fact, we have

det
(
ξm(n, z) ξm(n, 1− z)

∆ξm(n, z) ∆ξm(n, 1− z)

)
= 1− 2z
Lm(n)ξm(n, z)ξm(n, 1− z) 6= 0.

Hence, the linear combination of the functions ξm(n, z) and ξm(n, 1−z) is the general
solution of equation (3.1) (see [3, Theorem 2.15]).
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On the other hand, in case λ = 1/4, the characteristic equation (1.3) has double
root 1/2. As in the proof of the case λ 6= 1/4, ξm(n, 1/2) is one of the solutions of
equation (3.1). To get another solution of equation (3.1) with λ = 1/4, we put

u(n) = ∆y(n)− 1
2

(
m∑

k=1

1
Lk(n)

)
y(n), (3.2)

where y(n) is a solution of (3.1) with λ = 1/4 satisfying y(n0) = 0, ∆y(n0) =
1/Lm(n0). Then we see that u(n) satisfies u(n0) = 1/Lm(n0) and

∆u(n) =∆2y(n)− 1
2

{
m∑

k=1
∆
(

1
Lk(n)

)}
y(n)− 1

2

(
m∑

k=1

1
Lk(n+ 1)

)
∆y(n)

=− 1
2

(
m∑

k=1

1
Lk(n+ 1)

)
u(n).

Since (2.2) and (2.3) can be rewritten as

1
Lm(n) = ∆lm(n)

(
1 + 1

2

m∑

k=1

1
Lk(n)

)

and

Lm(n+ 1)− 1
2

m∑

k=1

Lm(n+ 1)
Lk(n+ 1) = Lm+1(n) + 1

2

m∑

k=1

Lm(n)
Lk(n) ,

we have

u(n) = u(n0)
n−1∏

j=n0

(
1− 1

2

m∑

k=1

1
Lk(j + 1)

)

= 1
Lm(n0)

n−1∏

j=n0

1
Lm(j + 1)

(
Lm(j + 1)− 1

2

m∑

k=1

Lm(j + 1)
Lk(j + 1)

)

= 1
Lm(n0)

n−1∏

j=n0

1
Lm(j + 1)

(
Lm(j) + 1

2

m∑

k=1

Lm(j)
Lk(j)

)

= 1
Lm(n)

n−1∏

j=n0

1
Lm(j)

(
Lm(j) + 1

2

m∑

k=1

Lm(j)
Lk(j)

)

= 1
Lm(n)

n−1∏

j=n0

(
1 + 1

2

m∑

k=1

1
Lk(j)

)

= ∆lm(n)
n∏

j=n0

(
1 + 1

2

m∑

k=1

1
Lk(j)

)
= ∆lm(n) ξm(n+ 1, 1/2).
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Hence, together with (3.2), we have

∆y(n) = 1
2

(
m∑

k=1

1
Lk(n)

)
y(n) + ∆lm(n) ξm(n+ 1, 1/2).

Solving this first order nonhomogeneous equation with y(n0) = 0, we obtain

y(n) =
n−1∑

k=n0



∆lm(k) ξm(k + 1, 1/2)

n−1∏

j=k+1

(
1 + 1

2

m∑

k=1

1
Lk(j)

)


= ξm(n, 1/2)
n−1∑

k=n0

∆lm(k) = ξm(n, 1/2) (lm(n)− lm(n0)).

Hence, the linear combination of ξm(n, 1/2) and ξm(n, 1/2) lm(n) is the general solu-
tion of equation (3.1). As a matter of fact, the Casoratian of the functions ξm(n, 1/2)
and ξm(n, 1/2) lm(n) is

det
(
ξm(n, 1/2) ξm(n, 1/2) lm(n)

∆ξm(n, 1/2) ∆(ξm(n, 1/2) lm(n))

)
= (ξm(n, 1/2))2

Lm(n) 6= 0.

The proof is now complete.

In case λ > 1/4, the characteristic equation (1.3) has the conjugate roots
z = 1/2± iα/2, where α =

√
4λ− 1. Hence, by Euler’s formula, we have

ξm(n, z) =
n−1∏

j=n0

(
1 + 1

2

m−1∑

k=1

1
Lk(j) + z

Lm(j)

)
=

n−1∏

j=n0

(
1 + 1

2

m∑

k=1

1
Lk(j) ±

iα
2Lm(j)

)

=
n−1∏

j=n0

r(j)e±iθ(j) =



n−1∏

j=n0

r(j)





cos



n−1∑

j=n0

θ(j)


± i sin



n−1∑

j=n0

θ(j)





 ,

where r(n) and θ(n) satisfy

r(n) cos θ(n) = 1 + 1
2

m∑

k=1

1
Lk(n) and r(n) sin θ(n) = α

2Lm(n) . (3.3)

Let

ϕ(n) =



n−1∏

j=n0

r(j)


 cos



n−1∑

j=n0

θ(j)


 , ψ(n) =



n−1∏

j=n0

r(j)


 sin



n−1∑

j=n0

θ(j)


 .

Then ϕ(n) and ψ(n) are linearly independent solutions of equation (3.1). In fact, since

∆ϕ(n) = ϕ(n+ 1)− ϕ(n) = r(n)



n−1∏

j=n0

r(j)


 cos



n−1∑

j=n0

θ(j) + θ(n)


− ϕ(n)
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= r(n) {ϕ(n) cos θ(n)− ψ(n) sin θ(n)} − ϕ(n)
= {r(n) cos θ(n)− 1}ϕ(n)− {r(n) sin θ(n)}ψ(n),

∆ψ(n) = ψ(n+ 1)− ψ(n) = r(n)



n−1∏

j=n0

r(j)


 sin



n−1∑

j=n0

θ(j) + θ(n)


− ψ(n)

= r(n){ψ(n) cos θ(n) + ϕ(n) sin θ(n)} − ψ(n)
= {r(n) cos θ(n)− 1}ψ(n) + {r(n) sin θ(n)}ϕ(n),

we have

det
(
ϕ(n) ψ(n)

∆ϕ(n) ∆ψ(n)

)
= r(n) sin θ(n)

{
ϕ(n)2 + ψ(n)2} = α

2Lm(n)

( n−1∏

j=n0

r(j)
)2
6= 0.

Thus the real solutions of equation (3.1) can be written as follows.
Corollary 3.2. Let λ > 1/4. Then

x(n) =



n−1∏

j=n0

r(j)





K5 sin



n−1∑

j=n0

θ(j)


+K6 cos



n−1∑

j=n0

θ(j)





 ,

is a general solution of equation (3.1), where r(n) and θ(n) satisfy (3.3).

4. OSCILLATORY BEHAVIOR

In this section, we examine the oscillatory behavior of solutions of equation (3.1).
To get oscillation criteria, we need the following lemma.
Lemma 4.1. Let m ∈ N and 0 < µ ≤ 1/4. Then there exist positive constants C1
and C2 such that

C1

(
m−2∏

i=0
logi(n)

)1/2

(logm−1(n))µ ≤ ξm(n, µ) ≤ C2

(
m−2∏

i=0
logi(n)

)1/2

(logm−1(n))µ

(4.1)
for n sufficiently large.
Proof. To begin with, we show the equality

ξm(n, µ) =



m−2∏

k=0





n−1∏

j=n0

(
1 + ∆lk(j)

2lk(j)

)




n−1∏

j=n0

(
1 + µ∆lm−1(j)

lm−1(j)

)
. (4.2)

Since

ξ1(n, µ) =
n−1∏

j=n0

(
1 + µ

L1(j)

)
=

n−1∏

j=n0

(
1 + µ∆l0(j)

l0(j)

)
,
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(4.2) with m = 1 is true. Assume that (4.2) with m = p holds. Then, using (2.2), we
have

ξp+1(n, µ) =
n−1∏

j=n0

(
1 + 1

2

p∑

k=1

1
Lk(j) + µ

Lp+1(j)

)

= ξp(n, 1/2)
n−1∏

j=n0



1 +

(
1 + 1

2

p∑

k=1

1
Lk(j)

)−1
µ

Lp+1(j)





=
p−1∏

k=0





n−1∏

j=n0

(
1 + ∆lk(j)

2lk(j)

)


n−1∏

j=n0

(
1 + µ∆lp(j)

lp(j)

)

Thus, (4.2) with m = p+ 1 is also true.
As in the proof of Lemma 2.3, we can show that there exist n1 ∈ N and C > 0

such that
n−1∑

j=n1

k∏

i=0

1
li(j)

≤ logk+1(n) and
n−1∑

j=n1

k∏

i=0

1
li(j + 1) ≥ logk+1(n)− logk+1(n1;C)

for n ≥ n1. Since z − z2/2 < log(1 + z) < z for 0 < z < 1, we have

log





n−1∏

j=n1

(
1 + µ∆lk(j)

lk(j)

)
 =

n−1∑

j=n1

log
(

1 + µ∆lk(j)
lk(j)

)
≤

n−1∑

j=n1

µ∆lk(j)
lk(j)

=
n−1∑

j=n1

µ

lk(j)

k−1∏

i=0

2
li(j) + li(j + 1) ≤ µ

n−1∑

j=n1

k∏

i=0

1
li(j)

≤ µ logk+1(n),

log





n−1∏

j=n1

(
1 + µ∆lk(j)

lk(j)

)
 ≥

n−1∑

j=n1

{(
µ∆lk(j)
lk(j)

)
− 1

2

(
µ∆lk(j)
lk(j)

)2
}

≥ µ
n−1∑

j=n1

(
k∏

i=0

1
li(j + 1)

)
− µ2

2

n−1∑

j=n1

(
k∏

i=0

1
li(j)

)2

≥ µ{logk+1(n)− logk+1(n1;C)} − µ2

2

n−1∑

j=n1

1
l0(j)2 .

Hence, from the boundedness of the function
∑n−1
j=n1

1/l0(j)2, there exists Ck > 0
such that

Ck(logk(n))µ ≤
n−1∏

j=n1

(
1 + µ∆lk(j)

lk(j)

)
≤ (logk(n))µ

for n ≥ n1, and therefore, combining (4.2) with these inequalities, we obtain (4.1).
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Using this lemma, we have the following oscillation criteria.

Corollary 4.2. Equation (3.1) can be classified into two types as follows:

(i) if λ > 1/4, then all nontrivial solutions of equation (3.1) are oscillatory;
(ii) if 0 < λ ≤ 1/4, then all nontrivial solutions of equation (3.1) are nonoscillatory.

Proof. Let λ > 1/4. Then, using Corollary 3.2, we see that the general solution
of equation (3.1) with λ > 1/4 is of the form

x(n) =



n−1∏

j=n0

r(j)





K5 sin



n−1∑

j=n0

θ(j)


+K6 cos



n−1∑

j=n0

θ(j)





 ,

where r(n) and θ(n) satisfy (3.3). Let (K5,K6) 6= (0, 0). Then we can rewrite as

x(n) = K7



n−1∏

j=n0

r(j)


 sin



n−1∑

j=n0

θ(j) +K8


 ,

where K7 =
√
K2

5 +K2
6 , sinK8 = K5/K7 and cosK8 = K6/K7. Hence, together

with (2.2), we get

tan θ(n) =
√

4λ− 1
2Lm(n)

(
1 + 1

2

m∑

i=1

1
Li(n)

)−1

=
√

4λ− 1
2 ∆lm(n)→ 0

as n→∞. Thus, there exists n1 ≥ n0 such that tan θ(n)/2 < θ(n) < π/2 for n ≥ n1.
Hence we obtain

n−1∑

j=n1

θ(j) ≥ 1
2

n−1∑

j=n1

tan θ(j) =
√

4λ− 1
4 (lm(n)− lm(n1))→∞

as n→∞. We also see that
∣∣∣∣∣∣

n∑

j=n0

θ(j)−
n−1∑

j=n0

θ(j)

∣∣∣∣∣∣
= θ(n) < π

2 ,

that is, for any sufficiently large p ∈ N, there exists n ∈ N such that

pπ ≤
n−1∑

j=n0

θ(j) +K8 < (p+ 1)π.

Hence x(n) is oscillatory, that is, all nontrivial solutions of equation (3.1) are
oscillatory.

Let λ = 1/4. Then it is easy to check that all nontrivial solutions of equation
(3.1) are nonoscillatory because ξm(n, 1/2) is positive and lm(n) → ∞ as n → ∞.
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Let λ < 1/4. Then, without loss of generality, we may assume that z > 1/2. In fact,
if z < 1/2, another root of characteristic equation (1.3) is greater than 1/2. Since
ξm(n, z) is positive, we have

x(n) = K1ξm(n, z) +K2ξm(n, 1− z) = ξm(n, z)
(
K1 +K2

ξm(n, 1− z)
ξm(n, z)

)
.

Hence, from Lemma 4.1, there exists C > 0 such that

ξm(n, 1− z)
ξm(n, z) ≤ C(logm−1(n))1−2z → 0

as n→∞. Thus x(n) is nonoscillatory. The proof is now complete.
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