PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Short-range noise radar with microwave correlator for through-the-wall detection

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analysis of the autocorrelation function of a noise signal in a limited band of a microwave frequency range is described in the paper. On the basis of this analysis the static characteristic of the detector for object movement was found. The measurement results for the correlation function of noise signals are shown and the application of such solution in a noise radar for the precise determination of distance variations and the velocity of these changes is presented in the paper. The construction, working principle and measurement results for through-thewall noise radar demonstrator have been presented in the paper. A broadband noise signal in microwave S frequency band has been chosen, for high sensitivity getting. The broadband noise signal together with correlation receiver provides high sensitivity and moderate range for low transmitted power level. The experimental results obtained from 2.6-3.6 GHz noise-like waveform for the signal of a breathing human are presented. Conclusions and future plans for application of the presented detection technique in broadband noise radars conclude the paper.
Rocznik
Strony
351--358
Opis fizyczny
Bibliogr. 27 poz., rys., wykr., wzory
Twórcy
autor
  • Military University of Technology, Faculty of Electronics, Institute of Radioelectronics, 2 Kaliskiego str., 00-908 Warsaw, Poland
autor
  • Military University of Technology, Faculty of Electronics, Institute of Radioelectronics, 2 Kaliskiego str., 00-908 Warsaw, Poland
Bibliografia
  • [1] Narayanan R. M. and Xu X. (2003). Principles and applications of coherent random noise radar technology. Proc. SPIE., 5113, 503-514
  • [2] Theron I.P., Walton E.K., Gunawan S., Cai L. (1999). Ultrawide-band noise radar in the VHF/UHF band. IEEE Trans. Antennas Propag., 47(6), 1080-1084.
  • [3] Axelsson S. R. J. (Nov. 2004). Noise radar using random phase and frequency modulation. IEEE Trans. Geosci. Remote Sens., 42(11), 2370-2384.
  • [4] Axelsson S. R. J. (2000). On the theory of noise Doppler radar. Geoscience and remote sensing, Proc. symp, Honolulu, 856-860.
  • [5] Axelsson S. R. J. (2003). Noise radar for range/Doppler processing and digital beamforming using low-bit ADC. IEEE Trans. Geosci. Remote Sens., 41(12), 2703-2720.
  • [6] Lukin K. A. (1998). Millimeter wave noise radar technology. Proc. 3rd Int. Kharkov Symp., Physics Engineering Millimeter and Submillimeter Waves, 94-97.
  • [7] Lukin K. A. (2002). The principles of noise radar technology, first international workshop on the noise radar technology., Proc. NTRW’2002, Yalta, 13-22
  • [8] Stephan R., Loele H. (2000). Theoretical and practical characterization of a broadband random noise radar’. Dig. 2000 IEEE MTT-S Int. Microwave Symp., Boston, 1555-1558.
  • [9] Tarchi D., Lukin K., Leva D., Fortuni A. M. J., Vyplavin P., and Sieber A. (2007). Implementation of noise radar technology in ground based SAR for short range applications. Proc. MSMIW Symp., Kharkov, 442-444.
  • [10] Guosui L., Hong G., Xiaohua Z., and Weimin S. (1997). The present and the future of random signal radars. IEEE Trans. Aerosp. Electron. Syst.Mag., 12(10), 35-40.
  • [11] Dawood M., Narayanan R. M. (2001). Receiver operating characteristics for the coherent UWB random noise radar. IEEE Trans. Aerosp. Electron. Syst., 37(2), 586-594.
  • [12] Walton E., Theron I., Gunawan S., and Cai L. (1997). Moving vehicle range profiles measured using a noise radar in Proc. Antennas Propag. Soc. Int. Symp., 2597-2600.
  • [13] Li Z., Narayanan R. (2006). Doppler visibility of coherent ultrawideband random noise radar systems. IEEE Trans. on Aerospace and Electronic Systems, 42(3), 904-916.
  • [14] Kulpa K. (2004). Ground clutter suppression in noise radar. Proc. Int. Conf. Radar, Tuluse, 236.
  • [15] Malanowski M., Kulpa K. (2012). Detection of moving targets with continuous-wave noise radar: theory and measurements. IEEE Transactions on Geoscience and Remote Sensing, 50(9), 3502-3509.
  • [16] Kulpa K., Gajo Z., Malanowski M. (2008). Robustification of noise radar detection. IET Radar, Sonar Navig., 2(4), 284-293.
  • [17] Meller M., Tujaka S. (2012). Processing of noise radar waveforms using block least mean squares algorithm. IEEE Transactions on Aerospace and Electronic Systems, 48(1), 749-761.
  • [18] Meller M. (2009). Approximate Crame´r-Rao bound on Doppler error in correlation-processing relatively narrowband noise radar. IET Radar Sonar Navig., 3(3), 245-252.
  • [19] Narayanan R. M. (2008). Through wall radar imaging using UWB noise waveforms. Journal of the Franklin Institute, 345(6), 659-678.
  • [20] Lai C.-P., Narayanan R. M. (2010). Ultrawideband random noise radar design for through-wall surveillance. IEEE Trans. on Aerospace and Electronic Systems, 46(4), 1716-1730.
  • [21] Lai C.-P., Narayanan R. M., Ruan Q., Davydov A. (2008). Hilbert-Huang transform analysis of human activities using through-wall noise and noise-like radar. IET Radar Sonar Navig., 2(4), 244-255.
  • [22] Hasse L., Spiralski L. (1981). Szumy elementów i układów elektronicznych. WNT, Warszawa, 35.
  • [23] Susek W., Stec B. (2010). Broadband microwave corerelator of noise signals. Metrology and Measurement Systems, 17(2), 289-298.
  • [24] Susek W., Stec B., Recko Cz. (2010). Noise Radar with Microwave Correlation Receiver. Acta Physica Polonica A, 119(4), 483-487.
  • [25] Stec B. (1987). Analysis of phase and amplitude characteristics of microwave phase discriminator with ring detectors. Bull. WAT, 11(423), 71-78.
  • [26] Lukin K. A., Mogyla A. A., Alexandrov Y. A., Zemlayaniy O. V., Lukina T., Shiyan Yu. (2001). W-band Noise Radar Sensor for Collision Warning Systems. The 4th International Symposium on Physics and Engineering of Millimeter and Sub-Millimeter Waves, Kharkov, 870-872.
  • [27] Smith S., Narayanan R. M. (2011). Cross-correlation analysis of noise radar signals propagating through lossy dispersive media. Proc. SPIE., 8021, 16.1-16.12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c36d39de-7d98-4004-a4d8-e008b14b4938
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.