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Abstract. We consider matrix Sturm-Liouville operators generated by the formal expression

l[y] = −(P (y′ −Ry))′ −R∗P (y′ −Ry) +Qy,

in the space L2
n(I), I := [0,∞). Let the matrix functions P := P (x), Q := Q(x) and R := R(x)

of order n (n ∈ N) be defined on I, P is a nondegenerate matrix, P and Q are Hermitian
matrices for x ∈ I and the entries of the matrix functions P−1, Q and R are measurable on I
and integrable on each of its closed finite subintervals. The main purpose of this paper is
to find conditions on the matrices P , Q and R that ensure the realization of the limit-point
case for the minimal closed symmetric operator generated by lk[y] (k ∈ N). In particular, we
obtain limit-point conditions for Sturm-Liouville operators with matrix-valued distributional
coefficients.
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1. PRELIMINARIES

Let I := [0,+∞) and let the complex-valued matrix functions P := P (x), Q := Q(x)
and R := R(x) of order n (n ∈ N) be defined on I. Suppose that P is a nondegenerate
matrix, P and Q are Hermitian matrices for x ∈ I and the entries of the matrix
functions P−1, Q and R are measurable on I and integrable on each of its closed finite
subintervals (i.e. belong to the space L1

loc(I)).
1.1. Let us consider the block matrix

F =
(
R P−1

Q −R∗
)
, (1.1)
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where ∗ is the conjugation symbol. Let ACn,loc(I) be the space of complex-valued
n-vector functions y(x) = (y1(x), y2(x), . . . , yn(x))t, t is the transposition symbol, with
locally absolutely continuous entries on I. Using matrix F , we define quasi-derivatives
y[i] (i = 0, 1, 2) of a given vector function y ∈ ACn,loc(I) by setting

y[0] := y, y[1] := P (y′ −Ry), y[2] := (y[1])′ +R∗y[1] −Qy,

provided that y[1] ∈ ACn,loc(I) and a quasi-differential expression

l[y](x) := −y[2](x), x ∈ I.

Thus,
l[y] = −(P (y′ −Ry))′ −R∗P (y′ −Ry) +Qy. (1.2)

The set of complex-valued vector functions D := {y(x)| y(x), y[1](x) ∈ ACn,loc(I)}
is the domain of expression (1.2). For y ∈ D the expression l[y] exists a.e. on I and
locally integrable there.

We note here that for every pair of vector functions f, g ∈ D and for every pair of
numbers α and β such that 0 ≤ α ≤ β <∞ the following vector analogue of Green’s
formula holds:

β∫

α

{〈l[f ](x), g(x)〉 − 〈f(x), l[g](x)〉}dx = [f, g](β)− [f, g](α), (1.3)

where 〈u, v〉 = v∗u =
∑n
s=1 usvs is the inner product of vectors u and v and the form

[f, g](x) is defined by

[f, g](x) := 〈f(x), g[1](x)〉 − 〈f [1](x), g(x)〉. (1.4)

Let L2
n(I) be the Hilbert space of equivalence classes of all complex-valued n-vector

functions Lebesgue measurable on I for which the sum of the squared absolute values
of coordinates is Lebesgue integrable on I.

Let D′0 denote the set of all complex-valued vector functions y ∈ D which vanish
outside of a compact subinterval of the interior of I (this subinterval may be different
for different functions) and such that l[y] ∈ L2

n(I). This set is dense in L2
n(I). By

formula L′0y = l[y] the expression l on the set D′0 defines a symmetric (not necessary
closed) operator in L2

n(I). Let L0 and D0 denote the closure of this operator and its
domain, respectively. The operator L0 and operators associated with it are called
matrix Sturm-Liouville operators.

Suppose further that λ ∈ C and =λ 6= 0, =λ is the imaginary part of the complex
number λ. Denote by Rλ and Rλ the ranges of L0 − λIn and L0 − λIn, In is the
n× n identity matrix, respectively, and by Nλ and Nλ the orthogonal complements in
L2
n(I) of Rλ and Rλ. The spaces Nλ and Nλ are called deficiency spaces. The numbers

n+ and n− (n+ = dim Nλ, n− = dim Nλ) are deficiency numbers of the operator L0
in the upper-half or lower-half of the complex plane, respectively, moreover, the pair
(n+, n−) is called the deficiency index of L0.
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As it was done, for example, in [1] and [18], it is possible to show that the deficiency
numbers n+ and n− coincide with the maximum number of linearly independent
solutions of the equation

l[y] = λy

belonging to the space L2
n(I), when =λ > 0 and =λ < 0, respectively. They also satisfy

the double inequality
n ≤ n+, n− ≤ 2n (1.5)

and, in addition, n+ = 2n if and only if n− = 2n. Using the analogy of the spec-
tral theory of scalar Sturm-Liouville operators on the half-axis, one may say that
the expression l[y] (the operator L0) is in the limit-point case if n+ = n− = n or in the
limit-circle case if n+ = n− = 2n, (see, for example, [1]).

Let us consider the equation

l[y](x) = f(x), a ≤ x ≤ b, (1.6)

where [a, b] is a finite real interval and f(x) some vector function in L1
n[a, b],

L1
n[a, b] is the space of integrable n-vector functions on [a, b].
Let vector function φ(x) be such that

φ(x) ∈ ACn[a, b], φ(a) = φ(b) = 0. (1.7)

If we scalar multiply (1.6) by φ(x), integrate over [a, b] and integrate by parts on
the left, we obtain

b∫

a

{〈Py′, φ′〉 − 〈PRy, φ′〉 − 〈R∗Py′, φ〉+ 〈(R∗PR+Q)y, φ〉} =
b∫

a

〈f, φ〉. (1.8)

If the equality (1.8) holds for all such functions φ(x), then one may say that y is
a weak solution of (1.6).

Thus, if y satisfies (1.6), we have (1.8) for all functions φ(x) with (1.7). Conversely,
one might ask whether if y satisfies (1.8) for all such φ(x), then y satisfies (1.6).

Let P0, Q0 and P1 be Hermitian matrix functions of order n with Lebesgue mea-
surable entries on I such that P−1

0 exists and ‖P−1
0 ‖, ‖P−1

0 ‖‖P1‖2, ‖P−1
0 ‖‖Q0‖2 are

locally Lebesgue integrable. Let also Φ := P1 + iQ0 and Φ̃ := P1 − iQ0. Assume that
the block entries in the matrix (1.1) are represented as P := P0, Q := −Φ̃P−1

0 Φ and
R := P−1

0 Φ, then we obtain the block matrix

F =
(

P−1
0 Φ P−1

0
−Φ̃P−1

0 Φ −Φ̃P−1
0

)
.

The conditions listed above on the matrix functions P0, Q0 and P1 suggest that all
entries of F belong to the space L1

loc(I). Detailed justification of this fact is given
in [17].
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As above, using the matrix F , we can define the quasi-derivatives of given vector
function y ∈ ACn,loc(I), assuming

y[0] := y, y[1] := P0y
′ − Φy, y[2] := (y[1])′ + Φ̃P−1

0 y[1] + Φ̃P−1
0 Φy.

Suppose further that the elements of matrix function P0 also belong to L1
loc(I), then

the entries of Φ are locally integrable on I. Thus, if we interpret the derivative ′ in the
sense of distributions, then we can remove all the brackets in the expression y[2] and
the quasi-differential expression l[y] in terms of distributions can be written as

l[y] = −(P0y
′)′ + i((Q0y)′ +Q0y

′) + P ′1y. (1.9)

In particular, if P0(x) = I, Q0(x) = O, O is the zero matrix and P1(x) = V (x), where
V (x) is a real-valued symmetric matrix function such that the entries of the matrix
V 2(x) are locally integrable on I, then the expression (1.9) takes the form

l[y] = −y′′ + V ′y.

Detailed description of scalar quasi-differential expressions of second order with
generalized derivatives is given in [14] and matrix expressions in [15–17].

We note here that in this case the relation (1.8) takes the form

b∫

a

{〈P0y
′, φ′〉 − 〈Φy, φ′〉 − 〈Φ̃y′, φ〉} =

b∫

a

〈f, φ〉.

1.2. Let us consider the block matrix F of order 2kn (k ∈ N, k > 1):

F =




R P−1 O O O O · · · O O
Q −R∗ In O O O · · · O O
O O R P−1 O O · · · O O
O O Q −R∗ In O · · · O O
...

...
... . . . . . . . . . . . . ...

...
O O O O O O · · · R P−1

O O O O O O · · · Q −R∗




,

where In is the n × n identity matrix and P,Q,R satisfy the conditions listed
in Subsection 1.1.

As above, using the matrix F , we define the quasi-derivatives y[i] (i = 0, 1, . . . , 2k)
of a given vector function y ∈ ACn,loc(I) assuming

y[0] := y, y[1] := P (y′ −Ry), y[2] := (y[1])′ +R∗y[1] −Qy,

y[3] := P ((y[2])′ −Ry[2]), y[4] := (y[3])′ +R∗y[3] −Qy[2], . . . ,

y[2k−1] := P ((y[2k−2])′ −Ry[2k−2]), y[2k] := (y[2k−1])′ +R∗y[2k−1] −Qy[2k−2],
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provided that y[i] ∈ ACn,loc(I) (i = 1, . . . , 2k − 1) and a quasi-differential expression

lk[y](x) := (−1)ky[2k](x), x ∈ I. (1.10)

Note that the quasi-differential expression lk[y] constructed in this way is a formal
k-power of (1.2). The explicit form of this expression is too large, because of it we do
not present it here.

The set of complex-valued vector functions

D := {y(x) | y(x), y[i](x) ∈ ACn,loc(I), i = 1, . . . , 2k − 1}

is the domain of (1.10). For y ∈ D the expression lk[y] exists a.e. on I and locally
integrable there.

Similarly as in Subsection 1.1, we can define a minimal closed symmetric operator
L0 generated by the expression (1.10) and introduce the concept of the deficiency
numbers of this operator. And in this case, the numbers n+ and n− coincide with the
maximum number of linearly independent solutions of the equation

lk[y] = λy

belonging to the space L2
n(I) when =λ > 0 or =λ < 0. Moreover, they satisfy double

inequality nk ≤ n+, n− ≤ 2kn and n+ = 2kn if and only if n− = 2kn.
Additionally, assuming that the matrix functions P0, P1, Q0 satisfy the conditions

listed in Subsection 1.1, we can define a formal k power of the quasi-differential
expression (1.9) where the derivatives are understood in the generalized sense.

As example, we present here the explicit form of l2[y] if the matrix F takes the
form

F =




V (x) In O O
−V 2(x) −V (x) In O
O O V (x) In
O O −V 2(x) −V (x)


 ,

where V (x) is a matrix function with sufficiently smooth entries. In this case the
quasi-differential expression l2[y] has the form

l2[y] = y(4) − 2(V ′(x)y′)′ + ((V ′(x))2 − V (3)(x))y.

1.3. Let us mention here that one of the important problems in the spectral theory of
the matrix Sturm-Liouville operators is to determine the deficiency numbers of the
operator L0. In particular, to find the conditions on the entries of the matrix function
F that ensure the realization of the given pair (n−, n+). One of the first works in
this direction was a paper of V.B. Lidskii [12]. Later this problem for classical matrix
Sturm-Liouville operators and operators with generalized coefficients was discussed
in many works, see, for instance, [3–5,9, 11–13,15–17,19–22] (and also the references
therein). In particular, for example, in [17] the authors obtained the conditions
of nonmaximality of deficiency numbers of operator L0 generated by (1.2). M.S.P.
Eastham in [4] investigated the values of the deficiency numbers depending on the
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indices of power functions which are entries of the matrix coefficient of the second order
differential operator. In [19] the method presented in [2] for scalar (quasi) differential
operators was generalized to operators generated by the matrix expression −y′′+P (x)y.
In [13] the authors obtained several criteria for a matrix Sturm-Liouville-type equation
of special form to have maximal deficiency indices. In [3] it is presented the conditions
on the coefficients of the expression (1.2) such that the deficiency numbers of the
operator L0 are defined as the number of roots of a special kind polynomial lying in
the left half-plane. The authors of [11] established a relationship between the spectral
properties of the matrix Schrödinger operator with point interactions on the half-axis
and block Jacobi matrices of certain class. In particular, they constructed examples
of such operators with arbitrary possible equal values of the deficiency numbers. We
also mention that in [1, 23] the deficiency numbers problem for matrix operators
generated by differential expressions of even order higher than the second is considered
and in [6–8,10] this problem was discussed for powers of ordinary (quasi)differential
expressions.

The main goal of this work is to obtain new sufficient conditions on the entries of
the matrices P,Q and R when the limit-point case can be realized for the expressions
l[y] and lk[y] (k > 1) constructed above in Subsections 1.1 and 1.2 (Theorems 2.1
and 2.10). In particular, we apply these results to obtain new interval limit-point
criteria (Corollary 2.11 and 2.12) and consider two examples of matrix Sturm-Liouville
operators with minimal deficiency numbers. We also note here that our approach is
based on the equality (1.8) and generalizes some results of [2] and [8] to the matrix
case. This method allows to obtain the limit-point conditions for the operators with
distributional coefficients and, in particular, for the matrix Sturm-Liouville operator
with point interactions.

2. LIMIT-POINT CONDITIONS

One of the main theorem is the following:

Theorem 2.1. Let w be a scalar non-negative absolutely continuous function on I,
suppose that the n× n matrix functions P,Q and R satisfy the conditions listed above
in Subsection 1.1 and there exist positive constants K1,K2,K3,K4,K5 and a, such
that for x ≥ a
(i) P ≥ K1‖P‖In,
(ii) w2

‖P‖ ≤ K2,

(iii) ‖P‖
(

w

‖P‖ 1
2

)′2
≤ K3,

(iv) w‖PR‖ ≤ K4‖P‖,
(v) w2(R∗PR+Q) ≥ −K5‖P‖In,
(vi)

∫∞
a

w
‖P‖ =∞,

where ‖ · ‖ is the self-adjoint norm. Then the operator L0 generated by (1.2) is in
the limit-point case.
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The proof of this theorem is established with the help of a few lemmas.
Let us mention that everywhere below the symbols K,K1,K2, . . . denote various

positive constants and ε, ε1, ε2, . . . denote “small” positive constants. These constants
will not necessarily be the same on each occurrence. And we write K(ε) when we
indicate the dependence of K on ε.
Lemma 2.2. Let w be as in Theorem 2.1 and let v be a scalar non-negative absolutely
continuous function with support in a compact J ⊂ I. Suppose that there exist positive
constants Ki, (i = 1, 2, . . . , 7) independent of J such that (i)–(v) in Theorem 2.1 are
satisfied on J and also
(a) ‖P‖v′ ≤ K6w,
(b) v ≤ K7.
Let l[y](x) = f(x). Then, given any ε > 0, there exists a positive constant K(ε),
independent of J , such that

∫

J

v2+αw2‖y′(x)‖2dx ≤ ε
∫

J

vα‖y(x)‖2dx+K(ε)
∫

J

v4+α‖l2[y](x)‖dx. (2.1)

Proof. The proof involves the use of (1.8) and the simple inequality

2|ab| ≤ εa2 + (1/ε)b2

which holds for arbitrary ε > 0. All integrals are over J and we omit the dx symbol
for brevity.

Using (1.8), we obtain

<
∫
〈Py′, φ′〉−

∫
|〈PRy, φ′〉+〈R∗Py′, φ〉|+<

∫
〈(R∗PR+Q)y, φ〉 ≤

∫
|〈f, φ〉|, (2.2)

here <f is a real part of function f .
Assume that φ = v2+α w2

‖P‖y.
Next, we note that

<
∫ 〈

Py′,
(
v2+α w2

‖P‖y
)′〉
≥
∫
{〈P

(
v1+α/2 w

‖P‖1/2 y
)′
,
(
v1+α/2 w

‖P‖1/2 y
)′
〉

−
∣∣∣∣
〈
P
(
v1+α/2 w

‖P‖1/2 y
)′
,
(
v1+α/2 w

‖P‖1/2

)′
y

〉

−
〈
P
(
v1+α/2 w

‖P‖1/2

)′
y,
(
v1+α/2 w

‖P‖1/2 y
)′〉∣∣∣∣

−
∣∣∣∣
〈
P
(
v1+α/2 w

‖P‖1/2

)′
y,
(
v1+α/2 w

‖P‖1/2

)′
y

〉∣∣∣∣.

Furthermore, using (i)–(iii) of Theorem 2.1, the Cauchy-Schwarz inequality and that
P is Hermitian matrix, we get

<
∫ 〈

Py′,
(
v2+α w2

‖P‖y
)′〉
≥ K1

∫
‖P‖

∥∥∥
(
v1+α/2 w

‖P‖1/2 y
)′∥∥∥

2
−K(ε1)

∫
vα‖y‖2.

(2.3)
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Next, we estimate the expression
∫ ∣∣∣∣
〈
PRy,

(
v2+α w2

‖P‖y
)′〉

+
〈
R∗Py′,

(
v2+α w2

‖P‖
)
y
〉∣∣∣∣.

Since the norm ‖ · ‖ is self-adjoint, then ‖PR‖ = ‖R∗P‖. Using also the properties
of inner products, norms and the condition (ii)–(iv) of Theorem 2.1 and (a),(b) of
Lemma 2.2 we obtain

∣∣∣∣
〈
PRy,

(
v2+α w2

‖P‖y
)′〉

+
〈
R∗Py′,

(
v2+α w2

‖P‖
)
y
〉∣∣∣∣

≤ ‖PR‖
(
v1+α/2 w

‖P‖1/2

)(
v1+α/2 w

‖P‖1/2 y

)′
‖y‖

+ ‖PR‖
(
v1+α/2 w

‖P‖1/2

)′
‖y‖2 + ‖PR‖

(
v2+α w2

‖P‖

)
‖y′‖‖y‖

≤ ε1K3
2 ‖P‖

(
v1+α/2 w

‖P‖1/2 y

)′2
+ 1

2ε2v
2+αw2‖y′‖2 +K(ε1, ε2)vα‖y‖2.

(2.4)

Furthermore, using (v), we obtain

<
∫ 〈

− (R∗PR+Q)y, v2+α w2

‖P‖y
〉
≤ K

∫
vα‖y‖2. (2.5)

Also we shall need the estimate

1
1 + ε3

v2+αw2‖y′‖2 ≤ ‖P‖
∥∥∥∥∥

(
v1+α/2 w

‖P‖1/2 y

)′∥∥∥∥∥

2

+K(ε3, ε4)vα‖y‖2. (2.6)

This inequality immediately follows from the product rule for
(
v1+ α

2 w

‖P‖ 1
2
y

)′
and the

conditions (ii), (iii) of Theorem 2.1 and (a), (b) of Lemma 2.2.
Next, we note here that
∫
|〈f, φ〉| =

∫ ∣∣∣
〈
f, v2+α w2

‖P‖y
〉∣∣∣ ≤ ε

∫
v4+α‖f‖2 +K(ε)

∫
vα‖y‖2. (2.7)

Substitute now (2.3)–(2.7) into (2.2) and choose ε1, ε2, ε3 sufficiently small so that
(K1 − ε1K3/2)(1 + ε3)−1 − ε2/2 > 0 we obtain the inequality (2.1).

From the Green’s formula (1.3) we obtain the following lemma.

Lemma 2.3. If y1, y2 are solutions of

l[y1](x) = f1(x), l[y2](x) = f2(x) (2.8)

and y1, y2, f1, f2 ∈ L2
n(I) then the form [y1, y2](x) (see (1.4)) tends to a finite limit

as x→∞.
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Moreover, we get the ensuing lemma.
Lemma 2.4. If f1, f2 in L2

n(I) and for every pair of solutions y1, y2 ∈ L2
n(I) of (2.8)

[y1, y2](x)→ 0, x→∞,

then the set of such solutions has dimension at most n.
Proof of Theorem 2.1. Here we apply the ideas of [8] to the matrix case.
From (vi) it follows that, for some b > a, w(b) > 0 and hence, since w is continuous,
there is a δ > 0 such that w

‖P‖ > 0 on [b, b+ δ]. Define

θ(x) =
x∫

b

w

‖P‖ , x ≥ b,

v(x) =
{

1− exp(θ(x)− θ(X)), b+ δ ≤ x ≤ X,
0, x ≥ X,

and in [b, b+δ) choose v such that it vanishes in a right neighborhood of b, 0 ≤ v(x) ≤ 1
and v has a continuous derivative in [b, b+ δ]. Then from (ii)

v′ = O

(
w

‖P‖

)
.

We also choose X such that θ(X) > ln 2 and T such that θ(T ) = θ(X)− ln 2. Then

v(x) ≥ 1
2 , b+ δ ≤ x ≤ T. (2.9)

Let us consider
∣∣∣∣∣∣

X∫

b

vw

‖P‖ [f, g]

∣∣∣∣∣∣
≤

X∫

b

vw

‖P‖
{
|〈f, g[1]〉|+ |〈f [1], g〉|

}
.

Using now the properties of inner products, norms and (2.1) we obtain that
∣∣∣∣∣∣

X∫

b

vw

‖P‖ [f, g]

∣∣∣∣∣∣
≤ K

X∫

b

‖f‖2 + ‖g‖2 + ‖l[f ]‖2 + ‖l[g]‖2. (2.10)

By Lemma 2.3, we know that [f, g] tends to a finite limit. Assume that this limit is
c 6= 0 and show that this leads to a contradiction with (vi).

Supposing that [f, g](x) ≥ c for large x, say x ≥ γ and choosing a > γ. For f, g
satisfying (2.8) of Lemma 2.3 we have from (2.9) and (2.10) that

c

2

T∫

b+δ

w

‖P‖ ≤
X∫

b

vw

‖P‖ [f, g] ≤ K.
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It leads to a contradiction with (vi). Therefore, [f, g]→ 0 when x→∞. Using now
Lemma 2.4 and the inequality (1.5) we obtain that the operator L0 generated by (1.2)
is in the limit-point case.

Corollary 2.5. Let w be a scalar non-negative absolutely continuous function on I,
suppose that the n × n matrix functions P0, P1 and Q0 satisfy the conditions listed
above in Subsection 1.1 and there exist positive constants K1,K2,K3,K4 and a, such
that for x ≥ a
(i) P0 ≥ K1‖P0‖In,
(ii) w2

‖P0‖ ≤ K2,

(iii) ‖P0‖
(

w

‖P0‖
1
2

)′2
≤ K3,

(iv) w‖P1 + iQ0‖ ≤ K4‖P0‖,
(v)

∫∞
a

w
‖P0‖ =∞.

where ‖ · ‖ is the self-adjoint norm. Then the operator L0 generated by (1.9) is in
the limit-point case.

To prove the theorem about deficiency numbers of the operator generated by lk[y],
k > 1 we need some additional lemma.

Lemma 2.6. Suppose that all hypothesis of Lemma 2.2 are satisfied. Then, given any
ε > 0, there exists a positive constant K(ε), independent of J , such that
∫

J

v4j‖lj [y]‖2dx ≤ ε
∫

J

v4(j+1)‖lj+1[y]‖2dx+K(ε)
∫

J

v4(j−1)‖lj−1[y]‖2dx. (2.11)

Proof. In the proof all integrals are over J and we omit dx symbol for brevity.
Put f = lj−1[y], g = l[f ] = lj [y]. Then
∫
v4j〈lj−1[y], lj+1[y]〉 =

∫
v4j〈f, l[g]〉

=
∫
v4j〈l[f ], g〉+

∫
(v4j)′〈Pf, g′〉

−
∫

(v4j)′〈R∗Pf, g〉 −
∫

(v4j)′〈Pf ′, g〉+
∫

(v4j)′〈PRf, g〉.

(2.12)

Using (a) of Lemma 2.2, we note that

(v4j)′ ≤ Kv4j−1 w

‖P‖ .

Therefore, we obtain
∣∣∣∣
∫

(v4j)′〈Pf, g′〉
∣∣∣∣ ≤

∫
|(v4j)′|‖P‖‖f‖‖g′‖ ≤ K

∫
v4j−1w‖f‖‖g′‖.
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From (2.1) with α = 4(j − 1) we have
∣∣∣∣
∫

(v4j)′〈Pf, g′〉
∣∣∣∣ ≤ K1(ε1, ε2)

∫
v4(j+1)‖l2[f ]‖2

+K2(ε1, ε2)
∫
v4j‖l[f ]‖2 +K3(ε1)

∫
v4(j−1)‖f‖2.

(2.13)

And
∣∣∣∣
∫

(v4j)′〈Pf ′, g〉
∣∣∣∣ ≤ K4(ε3)

∫
v4j‖l[f ]‖2 +K5(ε3)

∫
v4(j−1)‖f‖2. (2.14)

Similarly, using (iv) of Theorem 2.1, we get
∣∣∣∣
∫

(v4j)′〈R∗Pf, g〉
∣∣∣∣ ≤ K6(ε4)

∫
v4(j−1)‖f‖2 +K7

∫
v4j‖l[f ]‖2. (2.15)

Therefore, substituting (2.13)–(2.15) into (2.12), we obtain (2.11).

Lemma 2.7. Under the hypothesis of Lemma 2.2, given ε > 0 there exists a K(ε) > 0,
independent of J , such that

∫

J

v4j‖lj [y]‖2dx ≤ ε
∫

J

v4k‖lk[y]‖2dx+K(ε)
∫

J

‖y‖2dx (2.16)

for j = 1, 2, . . . , k − 1.
Proof. The proof is by induction on k and almost exactly the same as the proof
of Lemma 2.4 in [10, p. 91].

Definition 2.8 (see [10]). Let l[y] be a symmetric differential expression and let
k ∈ N, k > 1. We say that lk[y] is partially separated if y and lk[y] in L2

n(I) together
imply that lr[y] is in L2

n(I) for r = 1, 2, . . . , k − 1.
The next lemma follows from [10, Corollary 5.3.6].

Lemma 2.9. If l[y] is limit-point then lk[y], k > 1 is limit-point if and only if lk[y]
is partially separated.
Theorem 2.10. Suppose the hypothesis of Theorem 2.1 hold. Then lk[y] is limit-point
for any k ∈ N.
Proof. Let us show that the expression lk[y] is partially separated.

Using the definition of v given in the proof of Theorem 2.1, Lemma 2.7 and (2.16)
we get

(
1
2

)4j t∫

b+δ

‖lj [y]‖2 ≤
X∫

b+δ

v4j‖lj [y]‖2 ≤ K
∞∫

0

{‖lk[y]‖2 + ‖y‖2}.

Since t→∞ as X →∞ we can conclude that lj [y] is in L2
n(I) for j = 1, 2, . . . , k − 1

and that lk[y] is partially separated. Therefore, the statement of Theorem 2.10 follows
from Lemma 2.9.
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Now we give some applications of Theorems 2.1 and 2.10.

Corollary 2.11. Let
[am, bm], m = 1, 2, . . .

be a sequence of intervals such that

0 ≤ a1 < b1 ≤ a2 < b2 ≤ . . .

and M1,M2, . . . a sequence of positive numbers such that
∞∑

m=1

(bm − am)2

Mm
=∞. (2.17)

For some fixed K > 0 suppose that in each [am, bm] we have

(i) P (x) ≥MmIn, ‖P (x)‖ ≤ KMm,
(ii) (bm − am)‖PR‖ ≤ KMm,
(iii) (bm − am)2(R∗PR+Q) ≥ −KMmIn,

Then the operator L0 generated by (1.2) and all its powers lk[y], k = 2, 3, . . . are in
the limit-point case.

Proof. Taking

w(x) =





x− am, am ≤ x ≤ (am + bm)/2,
bm − x, (am + bm)/2 ≤ x ≤ bm,
0, otherwise

in Theorem 2.1 and applying Theorem 2.10 we get the corollary.

Corollary 2.12. Let [am, bm] and Mm, m = 1, 2, . . . be sequences of intervals and
positive numbers satisfying (2.17) as in Corollary 2.11. And for some fixed K > 0
suppose that in each [am, bm] we have

(i) P0(x) ≥MmIn, ‖P0‖ ≤ KMm,
(ii) (bm − am)‖P1 + iQ0‖ ≤ KMm,

Then the operator L0 generated by (1.9) and all its powers lk[y], k = 2, 3, . . ., are in
the limit-point case.

3. EXAMPLES

3.1. Let us consider the differential expression

l[y] = −(P0y
′)′ + P ′1y (3.1)

on I := [a,+∞), a > 0, where P0 = xαIn, P1 = x−βQ(xγ), α ∈ [0, 2], β ≥ 0 and Q(xγ)
is n× n periodic matrix function with continuous entries. Applying Corollary 2.5 with
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w = xα−1 to this expression and observing that x−β−1Q(xγ)y is a boundary operator,
we obtain that the operator, generated by

−(xαy′)′ + xδQ′(xγ)y, δ ≤ γ
is in the limit-point case and all its powers are also limit-point.
Remark 3.1. We note here that the expression −y′′ + xδQ(xγ)y, Q is n× n periodic
matrix function with continuous entries is discussed in detail in [19].
3.2. Let us consider the differential expression (3.1). Suppose that
0 = x0 < x1 < x2 < . . . and limm→∞ xm = ∞. Assume that P1(x) is a piecewise
continuously differentiable matrix function on I and xm (m = 0, 1, 2 . . .) are points
of discontinuity of the first kind of P1(x). Suppose also that P1(x) = Qm(x),
(xm − xm−1)‖Qm‖ ≤ k (k > 0) on (xm−1, xm] and

Hm = (hmij )ni,j=1 := Qm+1(xm + 0)−Qm(xm − 0)
is a jump of the matrix function P1(x) in xm. Assume also

∞∑

m=1
(xm − xm−1)2 =∞.

Then, applying Corollary 2.12, we obtain that the operator, generated by

−y′′ + (P ′1(x) +
∞∑

k=1
Hmδ(x− xm))y,

here δ(x) is the Dirac δ-function and P ′1(x) is a derivative of P1(x) when x 6= xm
(m = 0, 1, 2 . . .) is in the limit-point case and all its powers are also limit-point.
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