PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The Effect of the Packing Flow Area and Biogas Flow Rate on Biogas Purification in Packed Bed Scrubber

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study was to reduce the level of impurities in biogas to obtain a higher concentration of methane gas (CH4) in it. The biogas purification process was carried out in a packed scrubber using Monoethanolamine (MEA) compound as an absorbent. This research focused on the effect of the packing flow area and the optimum biogas flow rate for obtaining purified biogas with a high concentration of methane (CH4). The results of the study reveal that the packing flow area measuring 0.1963 cm2 is more optimal in the purification process compared to 1.7633 cm2 packing flow area. Different biogas flow rates at 0.3 L/min, 0.5 L/min, 1 L/min, and 12 L/min yield different results, and the highest concentration of CH4 at 90.141% is obtained from the slowest flow rate, which is 0.3 L/min. The slow flow rate and a small packing flow area equal to a longer contact time between MEA and the biogas flowing through it; hence, the absorption contact area is also greater compared to that with a faster flow rate; therefore, the highest level of CH4 is obtained at the slowest biogas flow rate.
Rocznik
Strony
49--56
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Departement of Renewable Energy Engineering, Sriwijaya State Polytechnic, Bukit Besar, Palembang, 30139, Indonesia
autor
  • Departement of Renewable Energy Engineering, Sriwijaya State Polytechnic, Bukit Besar, Palembang, 30139, Indonesia
autor
  • Departement of Renewable Energy Engineering, Sriwijaya State Polytechnic, Bukit Besar, Palembang, 30139, Indonesia
Bibliografia
  • 1. Abdurrakhman A., Soehartanto T., Hadi H.S., Toriki M.B., Widjiantoro B.L., Sampurno B. 2020. Design of Output Power Control System Based on Mass Flow Rate Comparison of Air-Fuel Ratio (AFR) on Dual Fuel Generator Set by Using PID Control Method. International Journal of Technology, 11(3), 574–586.
  • 2. Alkusma Y.M., Hermawan., Hadiyanto. 2016. Pengembangan Potensi Energi Alternatif dengan Pemanfaatan Limbah Cair Kelapa Sawit sebagai Sumber Energi Baru Terbarukan di Kabupaten Kotawaringin Timur. Jurnal Ilmiah. Jawa Tengah: Ilmu Lingkungan Universitas Diponegoro, 14(2), 96–102.
  • 3. Allo S.L., Widjasena H. 2019. Studi Potensi Pembangkit Listrik Tenaga Sampah (PLTSa) Pada Tempat Pembuangan Akhir (TPA) Makbon Kota Sorong. Jurnal Elektro Luceat, 5(2), 14–24.
  • 4. Arachchige U.S.P., Melaaen M.C. 2012. Selection of packing materials for gas absorption.
  • 5. European Journal of Scientific Research, 87(1), 117–126.
  • 6. Ardhiany S. 2018. Proses Absorbsi Gas CO2 Dalam Biogas Menggunakan Alat Absorber Tipe Packing dengan Analisa Pengaruh Laju Alir Absorben NaOH. Jurnal Teknik Patra Akademika, 9(2), 55–64.
  • 7. Augelletti R., Galli S., Gislon P., Granati M., Monteleone G., Murmura M.A., Annesini M.C. 2020. Biogas upgrading through CO2 removal by chemical absorption in an amine organic solution: Physical and technical assessment, simulation and experimental validation. Biomass and Bioenergy, 141, 1–11.
  • 8. Daiyan I.N., Kalsum L., Bow Y. 2020. Capturing CO2 from Biogas by MEA (Monoethanolamine) using Packed Bed Scrubber. Jurnal Teknik Kimia dan Lingkungan, 4(2), 54–62.
  • 9. Dang, Rochelle. 2003. CO2 Absorption Rate and Solubility in Monoethanolamine/ Piperazine/Water. Separation Science and Technology, 38(2), 337–357.
  • 10. Detman A., Chojnacka A., Błaszczyk M., Kaźmierczak W., Piotrowski J., Sikora A. 2017. Biohydrogen and Biomethane (Biogas) Production in the Consecutive Stages of Anaerobic Digestion of Molasses. Polish Journal of Environmental Studies, 26(3), 1023–1029.
  • 11. Gustiar F., Suwignyo R. A., Suheryanto., Munandar. 2014. Reduksi Gas Metan (CH4) dengan Meningkatkan Komposisi Konsentrat dalam Pakan Ternak Sapi. Jurnal Peternakan Sriwijaya, 3(1), 14–24.
  • 12. Iswanto, Ma’arif A., Kebenaran B., Megantoro P. 2021. Design of gas concentration measurement and monitoring system for biogas power plant. Indonesian Journal of Electrical Engineering and Computer Science, 22(2), 726–732.
  • 13. Kadarjono A., Yusnitha E., Dantosa A. S. D., Winastri P. D. 2020. Pengaruh Jenis Packing pada Menara Packed-Bed Absorber dalam Penyerapan Gas NOx. Urania, 26(1), 25–36.
  • 14. Kalsum L., Hasan A., Rusdianasari., Husaini A., Bow Y. 2020. Evaluation of Main Parameter Process of Anaerobic Digestion of Cow Dung in Fixed Dome Biodigester on Methane Gas Quality. Journal of Physics: Conference Series, 1500(1), 1–6.
  • 15. Kasikamphaiboon P., Chungsiripom J., Bunyakan C., Wiyaratn W. 2013. Simultaneous removal CO2 and H2S using MEA solution in a packed column absorber for biogas upgrading. Songklanakarin J. Sci. Technol, 6(8), 683–691.
  • 16. Kern D.Q. 1983. Process Heat Transfer. McGraw-Hill Book Company Japan, Ltd, Japan.
  • 17. Khan I. U., Othman M. H., Hashim H., Matsuura T., Ismail A., Arzhandi M. R.D. 2017. Biogas as a renewable energy fuel- A review of biogas upgrading, utilization and storage. Energy Conversion and Management, 150, 277–294.
  • 18. Krumdieck S., Wallace J. 2008. Compact, Low Energy CO2 Management using Amine Solution in a Packed Bubble Column. Chemical Engineering Journal, 135(1–2), 3–9.
  • 19. Mara I.M. 2012. Analisis Penyerapan Gas Karbondioksida (CO2) Dengan Larutan NaOH Terhadap Kualitas Biogas Kotoran Sapi. Dinamika Teknik Mesin, 2(1), 1–8.
  • 20. Meynell P.J. 1976. Methane: Planning a Digester. Great Britain, Prism Press
  • 21. Nwokolo N., Mukumba P., Obileke K., Enebe M. 2020. Waste to energy: A focus on the impact of substrate type in biogas production. Processes, 8(10), 1224.
  • 22. Saleh A., Tobing J. D., Pratama H. 2015a. Peningkatan Persentase Metana dalam Kualitas Biogas Sebagai Bahan Bakar Alternatif Menggunakan Membran Berbahan Karbon Aktif. Jurnal Teknik Kimia, 21(2), 24–30.
  • 23. Saleh A., Permana D.A., Yuliandita R. 2015b. Pengaruh Komposisi Absorben Campuran (Zeolit -Semen Putih) dan Waktu Absorpsi Produk Gas Metana Terhadap Kualitas Biogas Sebagai Bahan Bakar Alternatif. Jurnal Teknik Kimia, 21(4), 1–6.
  • 24. Setyowati A.D. 2017. Aplikasi Zeolit pada Pembuatan Scrubber Gas Etilen (C2H4) untuk Pengawetan Buah Nangka Kupas. Jurnal Ilmiah Teknik Kimia UNPAM, 1(2), 62–69.
  • 25. Sianipar R.H. 2009. Tesis: Analisis Risiko Paparan Hidrogen Sulfida Pada Masyarakat Sekitar TPA Sampah Terjun Kecamatan Medan Marelan. Master’s Thesis, Graduate Program, Universitas Sumatera Utara, Medan, Indonesia.
  • 26. Singhal S., Agarwal S., Arora S., Sharma P., Singhal N. 2017. Upgrading techniques for transformation of biogas to bio-CNG: A review. Int. J. Energy Res, 41(12), 1657–1669.
  • 27. Soehartanto T., Wahyuono R.A., Aisyah P.Y., Ubaidhilah B. 2021. A Novel Simple Dipping- Nebulizing Water Absorption for Biogas Purification. International Journal of Technology, 12(1), 186–194.
  • 28. Speight J.G., Radovanovic L. 2020. Biogas-A Substitute for Natural Gas. Annals of the Faculty of Engineering Hunedoara, 18(1), 95–99.
  • 29. Tabatabaei M., Ghanavati H. 2018. Biogas Fundamentals, Process, and Operation. Karaj, Springer.
  • 30. Tetteh E., Amano K.O.A., Asante-Sackey D., Armah E. 2018. Response Surface Optimisation of Biogas Potential in Co-Digestion of Miscanthus Fuscus and Cow Dung. International Journal of Technology, 9(5), 944–954.
  • 31. Villadsen S.N.B., Kaab M.A., Nielsen L.P., Møller P., Fosbøl P.L. 2021. New electroscrubbing process for desulfurization. Separation and Purification Technology, 278, 119552.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c369ca6a-4c22-4145-a6ca-afbcd9a8411c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.