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Abstract:
In this work the optimization process of the tracking and 
reactive controllers for a  mobile robot are presented. 
The Chemical Reaction Algorithm (CRA) is used to find 
the optimal parameter values of the membership func-
tions and rules for the reactive and tracking controllers. 
In this case, we are using five membership functions in 
each variable of the fuzzy controllers. The main goal of 
the reactive controller is aimed at providing the robot 
with the ability to avoid obstacles in its environment. The 
tests are performed on a  benchmark maze problem, in 
which the goal is not necessarily to leave the maze, but 
rather that the robot avoids obstacles, in this case the 
walls, and penalizing for unwanted trajectories, such as 
cycles. The tracking controller’s goal is for the robot to 
keep into to a certain path, this in order that the robot 
can learn to react to unknown environments. The optimi-
zation algorithm that was used is based on an abstrac-
tion of chemical reactions. To perform the simulation we 
use the “SimRobot” toolbox, the results of the tests are 
presented in a detailed fashion, and at the end we are 
presenting a comparison of results among the CRA, PSO 
and GA methods. 

Keywords: Chemical Reaction Algorithm, control, fuzzy 
logic, robotics

1.	 Introduction
Lofti Zadeh (1965) proposed fuzzy logic and rules-

based procedures as a means to model and capture 
the human knowledge and deal with uncertainty in 
the real word. These methods have been applied to ill 
defined industrial processes, since these methods are 
usually based on experienced people who usually ob-
tain good results, regardless of whether they receive 
imprecise information [10–14, 23]. The methods have 
also been applied to Control of a Mobile Robot using 
Fuzzy Bee Colony Optimization Algorithm [2, 8], Par-
ticle Swarm [3, 16–18, 21–24, 26, 42–46], Genetic Al-
gorithms [11, 15, 29, 47], Differential evolution [30] 
and Ant Colony Optimization [25, 30, 37, 41]. The 
origin of these impreciseness can be related to a var-
iation of time concerning the application of a control 
signal and the warning of its effect [2], and nonlinear-
ities in the dynamics of the system or sensor degrada-
tion [21]. The processes in which the fuzzy rule-based 
approximation have been applied include the auto-

mated process of the Operation of a Public Transport 
System [38], water tank control [1], [20] and sewage 
treatment plants [47].

We use the word fuzzy because fuzzy systems have 
to be precisely defined, a fuzzy controller operates 
as a non-linear controller that is defined with preci-
sion. Essentially what we want to emphasize is that 
although the phenomenon described by this theory 
may be fuzzy, the theory itself is accurate.

The CRA optimization algorithm was originally 
developed by Astudillo et al. [6], which is based on 
a metaheuristic of a population that does not change 
in size, in addition to applying a generalization of 
chemical reactions as exploration and exploitation of 
mechanisms. The algorithm uses chemical reactions 
by changing at least one of the substances (element 
or compound), changing their composition and sets 
of properties. We take as a basis the tests performed 
by Melendez et al. [32–36] and de la O [13], in which 
a fuzzy system is designed for the navigation of an 
Automonous Mobile Robot, it uses 2 controllers, a re-
active controller and a tracking controller, and then 
optimizes the parameters and rules of the controllers 
using GA [32–36].

This work is organized as follows: Section 2 refers 
to the concepts of fuzzy logic systems, Section 3 de-
scribes the Chemical Optimization Paradigm used in 
the present paper. Sections 4 and 5 define the funda-
mental methodology of this work and the benchmark 
functions used. Section 6 shows the results of the 
simulations, comparisons and Section 7 presents the 
conclusion.

2.	 The CRA Paradigm
The algorithm of chemical reactions was devel-

oped by Astudillo et al. in 2011 [6], this algorithm is 
a new paradigm which is inspired by natural behavior 
of the chemical reactions, makes the population come 
together to find an optimal result in the search space 
supported by several intensifier/diversifier mecha-
nisms.

One might think that chemical theory and it is de-
scriptions are difficult and that have no relation with 
the optimization theory, but only the general scheme 
is considered as the basis of the chemical reaction op-
timization algorithm. 

Astudillo et al. [4–7], defined the elementary ter-
minology for characterizing and classifying artificial 
chemicals. Because the laws of reaction and rep-
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2.2.1. Combination Reactions

In this type of reactions, two of the substances that 
can be elements or compounds are combined to form 
the product. Reactions of this type are classified as 
combining synthesis, and are generally represented 
as follows:

	 B + X → BX	 (1)

2.2.2. Decomposition Reactions
In a decomposition reaction, a single substance 

decomposes or breaks, producing two or more dis-
tinct substances. The starting material must be 
a compound and the products can be elements or 
compounds. The general form of this equation is the 
following:

	 BX → B + X	 (2)

2.2.3. Substitution Reactions
In a simple substitution reaction an element re-

acts with a compound and takes the place of one of 
the elements of the compound, producing a different 
element and also a different compound. The general 
formula for this reaction is:

	 X + AB → AX + B	 (3)

2.2.4. Double-substitution Reactions
In a double substitution reaction, two compounds 

exchange pairs with each other to produce distinct 
compounds. The general form of these equations is [4]: 

	 AB + CD → AC + BD	 (4)

The flowchart for this optimization method can 
be found in Figure 1, and the following list of steps is 
presented:
–	 We start by generating an initial set of elements/

compounds.
–	 We evaluate the original set of elements, to obtain 

a fitness values.
–	 Based on the above evaluation, we select some of 

the elements/compounds to “induce” a reaction.
–	 Taking into consideration the result of the reaction, 

evaluations of the news element/compounds 
are obtained and selected elements are those of 
greater fitness

–	 Repeat the steps until the algorithm meets the 
terminating criteria (the desired result in the 
maximum number of iterations is reached) [6].

Fig. 1. Flowchart of the CRA

resentation of the elements/compounds are of sta-
tistical and qualitative character, then the algorithm 
is a representation of the general procedure of the 
chemical reactions. The initial description of the el-
ements/compounds depends on the problem. These 
elements/compounds can be symbolized as binary, 
integer, floating, numbers etc.

The relationship between the elements/com-
pounds is indirect: The interaction does not take into 
account the rules of interaction and molecular struc-
ture and as a consequence does not include values of 
temperature, pH, pressure, etc.

The Chemical reaction algorithm is a metaheuris-
tic that explores all possible solutions that exist for 
a defined search space. This optimization algorithm 
uses an element (or compound) to represent a possi-
ble solution for a problem and the objective function 
measures the performance capacity of the element. 
The algorithm ends when the objective is achieved 
or the number of scheduled iterations have been 
reached.

The CRA does not use the external values (con-
servation of masses, thermodynamic characteristics, 
etc.), and this represents an advantage when com-
pared to other optimization algorithms, as it is a very 
direct method which takes into account the main fea-
tures of chemical reactions (synthesis, decomposi-
tion, substitution and double substitution) to obtain 
the optimal solution in a search space.

2.1. Elements or Compounds
The algorithm makes an analogy to natural chem-

ical reactions, therefore it represents a possible solu-
tion to the problem using an element, which is initial-
ized with values that depend on the problem to solve, 
and these values can be binary numbers, integers, 
floating, etc. These elements will interact with each 
other indirectly. That is, the interaction is independ-
ent of the actual molecular structure. This approach 
does not take into account other molecular proper-
ties, such as potential and kinetic energies, among 
others.

2.2. Chemical Reactions
A Chemical reaction is a chemical process in which 

the two substances, the so-called reactants, by the 
action of an energy factor, become other substances 
designated as compounds. Taking this process into 
account, chemical reactions as intensifying (substi-
tution, double substitution reactions) and diversifi-
cation (synthesis, decomposition reactions) mech-
anisms can be used. These four chemical reactions 
considered in this approach are synthesis, decompo-
sition, single and double substitution. With these op-
erators new solutions within a defined search space 
can be explored, the algorithm allows to define the 
percentage of the elements to be evaluated in each 
chemical reaction, it can be from 0% to 100%.
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This algorithm consists of a metaheuristic based 
on a static population, and applies an abstraction of 
chemical reactions as intensifying mechanisms and 
diversification. It also uses an elitist reinsertion strat-
egy which allows for the perpetuity of the best ele-
ments and, therefore, the average fitness of the whole 
set of elements increases with each iteration.

The reactions of synthesis and decomposition are 
used for exploration in the search space of the solu-
tions: These procedures demonstrate to be effective and 
promptly lead to the results of a desired optimal value.

The single and double substitution reactions allow 
the algorithm to search for obtaining optimal values 
around a previously found solution.

We start the algorithm by randomly generating 
a set of elements/compounds under the uniform dis-
tribution space of possible solutions, and this is rep-
resented as follows: 

	 X = {x1, x2, …, xn}, 	 (5)

Where xn is used to represents the element/com-
pound. 

The total number and the representation of the 
original elements depend on the complexity of the 
problem that is solved.

In order to find the best possible controllers we use 
a metaheuristic strategy, which has proven to produce 
good results, and this is achieved by applying the CRA 
(see Fig. 2). In this case the algorithm will search the 
solution space of the problem to be solved. Combining 
the values of the best controllers and generating new 
controllers. The goal is to optimize the parameters of 
the membership functions and fuzzy rules.

Fig. 2. General flowchart of the chemical reaction 
algorithm optimizing the fuzzy controllers

3. Description of the Tool for Simulation
The SIMROBOT toolbox software [30] enables 

performing robot simulations and is used for testing 
the fuzzy controllers. The mobile robot has two con-

trolled and sensed wheels, in addition to an uncon-
trolled and un-sensed wheel. Figure 3 illustrates this 
type of robot. This robot has two degrees of freedom: 
y-translation and x-translation or z-rotation. 

Fig. 3. Kinematic coordinate system [27]

The kinematic equations of the mobile robot are 
as follows:

Equation 6 shows the sensed forward velocity 
solution 

	 	 (6)

Equation 7 shows the Actuated Inverse Velocity 
Solution:

	 	 (7)

where (in the metric system):

 are the translational velocities of the robot’s 
body [m/s],

 is the robot’s z-rotational velocity [rad/s],
 are the wheels’ rotational velocities [rad/s],

R the actuated wheel radius [m],
la, lb are the distances between the wheels and the ro-
bot’s axes [m].

4. Simulations and Tests
Two different control tests were performed to ex-

periment with the performance of the algorithm in 
control problems, and each test is described as fol-
lows.

We used the Chemical Reaction Algorithm (CRA) 
to optimize the parameters and rules of the reactive 
and tracking fuzzy controllers, one test was to op-
timize only the parameters of the fuzzy controller, 
leaving the controller’s fuzzy rules fixed. A second 
test was to optimize parameters and fuzzy controller 
rules, and for this test we executed two CRAs simul-
taneously, one that optimizes the parameters and 
another one that optimizes the rules, alternating in 
each iteration.

The CRA performs the task of initializing the pa-
rameters of each fuzzy controller, selecting the ele-
ments and the chemical reactions that will be applied, 
evaluating the results and, through the simulation, 
performing an elitist reinsertion and putting them 
back into the population.
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4.1. Reactive Controller
The reactive control has the purpose to achieve the 

same capability that a person has when is driving, that 
is, to react to unanticipated circumstances, road traffic 
congestions, traffic of the signs, etc., but in a more ele-
mentary level. We use a maze to test possible solutions, 
in the which the objective is not to guide the robot 
through the maze to the exit, but rather obstacle avoid-
ance. The objective is to optimize the robot controller 
to find the maze output, use the maze to optimize the 
reactive control due to the characteristic of the situa-
tion of the simulation, i.e. it is a confined space in which 
the robot can not move easily and each wall is consid-
ered as an obstacle for the robot to avoid them while 
moving. We use a Mamdani type FIS, which consists of 
3 inputs, that are the distances obtained by the robot 
sensors, as mentioned in Section 2, and 2 outputs that 
control the speed of the servo motors in the robot, and 
all this information is encoded in each element.

4.1.1. Reactive Controller with Type-1 Fuzzy Logic
We encode each membership function of the fuzzy 

reactive controller, represented by an element, into 
25 positions of a vector of real values, which repre-
sents the values of each parameter of the triangular 
membership function, which has five membership 
functions in each of its variables (see Fig. 4). 

Fig. 4 Structure of the element to fuzzy parameters 

We encode the values of the rules of the fuzzy reac-
tive controller, represented by an element, into 250 po-
sitions of a vector of integer values, which represent the 
value of the rules set of the fuzzy controller (see Fig. 5). 

Fig. 5. Structure of the element to fuzzy rules 

Fig. 6. Fuzzy reactive control inputs

The controller is a Mamdani fuzzy system and it 
has 3 inputs (the sensors of the robot) and two out-
puts which control the speed of each servomotor of 
the robot. This is illustrated in Figure 6.

4.1.2. Reactive Controller with Type-2 Fuzzy Logic
We encode each membership function of the fuzzy 

reactive controller, represented by an element, into 
50 positions of a vector of real values, which repre-
sent the values of each parameter of the triangular 
membership function, which has five membership 
functions in each of its variables (see Fig. 7). 

Fig. 7. Element Encoding to fuzzy parameters

We encode the values of the rules of the fuzzy re-
active controller, represented by an element, into 250 
positions of a vector of integer values, which repre-
sent the values of the rules set of the fuzzy controller 
(see Fig. 8). 

Fig. 8. Structure of the element to fuzzy rules

The controller is a Mamdani fuzzy system and 
it has 3 inputs (the sensors of the robot) and two 
outputs which control the speed of each servomo-
tor of the robot, respectively. This is illustrated in 
Figure 9.

Fig. 9. Fuzzy reactive control inputs
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4.2. Tracking Controller
The goal of the tracking controller is to keep the 

robot on the right path, in a given reference. The robot 
will be able to move about the reference and stay on 
the road, being able to move from point A to B, with-
out obstacles present in the path.

4.2.1. Tracking Controller with Type-1 Fuzzy Logic
We encode each membership function of the fuzzy 

tracking controller, represented by an element, into 
20 positions of a vector of real values, which repre-
sents the values of each parameter of the triangular 
membership function, which has five membership 
functions in each of its variables (see Fig. 10). 

Fig. 10. Structure of the element to fuzzy parameters

We encode the values of the rules of the fuzzy reac-
tive controller, represented by an element, into 50 posi-
tions of a vector of integer values, which represent the 
values of rules set of the fuzzy controller (see Fig. 11).

Fig. 11. Structure of the element to fuzzy rules

Fig. 12. Fuzzy controller inputs ℮p, ℮θ

The controller will take into account the errors 
(Δep, Δθ) in its minimum values, Figure 12, the min-
imum values to which are refert to the relative error 
of the orientation of the left front and the relative er-
ror of the position. We used a Mamdani Fuzzy system 
and its 2 inputs are (Δep, Δθ) and two outputs which 
control the speed of each servomotor of the robot and 
this is illustrated in Figure 12.

To calculate the performance of the controller we 
use the equation of the mean square error between 
the reference and the path of the robot. 

4.2.2. Tracking Controller with Type-2 Fuzzy Logic
We encode each membership function of the fuzzy 

tracking controller, represented by an element, into 
40 positions of a vector of real values, which repre-
sent the values of each parameter of the triangular 
membership function, which has five membership 
functions in each of its variables (see Fig. 13). 

Fig. 13 Structure of the element to fuzzy parameters

We encode the values of the rules of the fuzzy reac-
tive controller, represented by an element, into 50 posi-
tions of a vector of integer values, which represent the 
values of rules set of the fuzzy controller (see Fig. 14).

Fig. 14 Structure of the element to fuzzy rules

The controller will take into account the errors 
(Δep, Δθ) in its minimum values, Figure 7, the mini-
mum values to which we refer are the relative error 
of the orientation of the left front and the relative er-
ror of the position. We used a Mamdani Fuzzy system 
and its 2 inputs are (Δep, Δθ) and two outputs which 
control the speed of each servomotor of the robot and 
this is illustrated in Figure 15.

Figure 15. Fuzzy controller inputs ℮p, ℮θ
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To calculate the performance of the controller we 
use the equation of the mean square error between 
the reference and the path of the robot. 

4.3. Objective Function for Both Controllers
The CRA starts by creating elements to be eval-

uated by the Simrobot toolbox which will assign 
a crisp value that will represent the performance of 
the controller taking into account the criteria that 
we want to achieve. To achieve this, we must pro-
vide the CRA with a good evaluation criterion which 
is capable of penalizing undesirable behaviors and 
rewarding with higher fitness values those elements 
that yield the performance we desire in the control-
ler. If we do not provide a correct evaluation method, 
we can guide the population of elements to subop-
timal solutions or even not to a solution at all [5], 
[17]–[21], [31]. The algorithm has fixed parameters 
for the chemical reactions, for our tests and based on 
the proposed by Astudillo et al., we use for each re-
action a value of 0.2, which corresponds to take 20% 
of the amount of elements and react in each of the 
4 reactions.

4.3.1. Reactive Controller Objective Function
In order to measure the performance of the con-

troller, we will use the following criteria:
–	 Distance traveled,
–	 Time used to travel the distance,
–	 Battery life.

In order to measure these criteria we will use 
a Fitness FIS, which will provide the desired fitness 
value, adding very basic fuzzy rules that will give 
greater fitness to the controller that provided the 
longer trajectories in smaller times and a longer bat-
tery life. This seems to be a good strategy that will 
guide the algorithm to evolve and provide optimal 
control, but we have noticed that this strategy is not 
able to do just that on its own: it is also necessary to 
have a robot trajectory supervisor to make sure that 
there is a forward movement path and free of loops. 
For this purpose, it uses a neural network (NN) that 
is capable of detecting trajectories with cycles that do 
not have the desired forward displacement behavior, 

assigning a low activation value and higher activation 
values to those that are cycle free. The NN consists of 
two inputs and one output, and two hidden layers, see 
Figure 16.

To perform the evaluation of the reactive con-
troller we will use the method of integrating both 
the FIS and the NN where the final fitness value for 
each element will be calculated with Equation 7. 
Taking into account the NN response, the activation 
value is set to 0.35, this means that any activation 
less than 0.35 will be penalized in the ability given 
by the FIS.

Equation 8 expresses how to calculate the fitness 
value of each individual

	 	 (8)

where: 
fi – fitness value of the i-th individual, 
fv – crisp value out of the fitness FIS,
nnv – looping trajectory activation value.

4.3.2. Tracking Controller Objective Function
To measure the performance of the tracking con-

troller we use the root-mean-square error (RMSE) 
between the given reference and the path achieved 
by the robot. We will perform the test three times for 
each element and take the average of the three tests. 
The initial position of the robot with respect to the 
reference is random, but it ensures that a vertical po-
sition of the robots is above the reference and in an-
other test it is below it (Fig. 17) [32–36].

Fig. 17. Fitness Function for the Tracking Controller

Figure 16. Fitness Function for the Reactive Controller
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5.	 Simulation Results
We present the results of the tests performed for 

each of the controllers: reactive and tracking. In order 
to perform these tests we have used as mentioned be-
fore the SimRobot Software and the Matlab language. 
To determine the suitability of each controller we use 
the simulation software. In the tests of the reactive 
controller, the robot must be able to react in a closed 
environment, avoiding hitting the obstacles (walls). 
In the tracking controller test the robot must be able 
to stay above the given reference.

The results will be presented in two subsections:
–	 Reactive Controller,
–	 Tracking Controller.

5.1. Reactive Controller
In this section, we show the results of the tests 

with the reactive controller, and to determine the suit-
ability of each controller we use the simulation tool. 
In the tests of the reactive controller the robot must 
be able to react in a closed environment, avoiding hit-
ting the obstacles (walls).

5.1.1. Reactive Controller with Type-1 Fuzzy Logic
We can find the configuration of the CRA and the 

results of the simulation tests in Table 1, where we can 
find the fitness value obtained in each of the experi-
ments. We can also find statistical values which are the 
mean, variance, best and the worst obtained values. 

Table 1. Summary of type 1 reactive controls results

5.1.2. Reactive Controller with Type-2 Fuzzy Logic
We can find the configuration of the CRA and the 

results of the simulation tests in Table 2, where we 
can find the fitness value obtained in each of the ex-
periments. We can also find statistical values which 
are the mean, variance, best and the worst values ob-
tained. 

5.2. Tracking Controller
In this section, we show the results of the tests of 

the tracking controller, and to determine the suitabil-
ity of each controller we use the simulation tool. The 
goal of the tracking controller is to keep the robot on 
the right path, with respect to a given reference.

Table 2. Summary of type 2 reactive controls results

Element Iteration
20 1000

Fitness
1 0.3299
2 0.3226
3 0.3143
4 0.3126
5 0.33
6 0.3607
7 0.3304
8 0.3299
9 0.3179

10 0.33
Average 0.32783

Best 0.3607
Poor 0.3126

Std Dev 0.01352

We can find the configuration of the CRA and the 
results of the simulation tests in Table 3, and we can 
also find the fitness value obtained in each of the ex-
periments. We can also notice statistical values which 
are the mean, variance, best and the worst obtained 
values. 

Table 3. Summary of Tracking Results

We can state that the results are good, because 
the average of the results is 0.2880, the best result is 
0.2260, and when comparing with other algorithms 
(i.e. PSO) the result of the CRA is better.

5.3. Comparison of Results
We compare against Melendez et al. [4], and Ta-

bles 4 and 5 summarize the results presented in [4], 
where we have added the results obtained using the 
CRA.

5.3.1. Reactive Controller
In this section we do a comparison of the CRA, 

Genetic Algorithm(GA) and Particle Swarm Optimiza-
tion.

We can find the parameters used in the CRA, GA 
and PSO in Table 3, we note that the parameters that 
the CRA uses less iterations than the GA and PSO, and 
also a smaller population size.
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Table 4. Parameters of the CRA, GA and PSO

We can find the results of CRA, GA and PSO in Ta-
ble 5, where we have the best, the worst, standard de-
viation and the average of each method.

Table 5. Comparison of Results of CRA and GA

To compare the algorithms we performed an 
ANOVA test for the three samples with a significance 
level a of 0.05. Using the following parameters for the 
ANOVA test.
H0: All means are equal
H1: At least one mean is different
α = 0.05. 

To perform the analysis, the variances are assumed 
to be the same. We can conclude that the results of the 
ANOVA test is to reject the null hypothesis. Because of 
this, the Tukey test is also performed. Tukey’s com-
parisons indicated with 95% confidence that PSO was 
statistically better than GA and CRA, which were as-
sumed to be statistically the same. 

5.3.2. Tracking Controller
We can find the parameters used for CRA, GA and 

PSO in Table 6, we can note that the parameters of 
CRA uses less iterations than the GA and PSO, and also 
a smaller population size.

Table 6. Comparison of Results of CRA and PSO

6.	 Conclusion
In the present work, we used the CRA to optimize 

the parameters and rules of the fuzzy controllers, both 
for reactive and tracking behaviors. The reactive con-
troller aims at giving the robot the ability to avoid ob-
stacles in its environment. The tests were performed in 
a maze, in which the goal is not to leave the maze, but 
that the robot avoids obstacles, in this case the walls, 
and penalizing the unwanted trajectories as cycles. The 
tracking controller’s goal is for the robot to be able to 
stay on a certain path, this test was performed 3 times 
for each element, this in order that the robot can react 
to unknown environments. After performing the tests, 
analyzing and comparing the results, we can notice 
that the algorithm is not statistically better GA, and its 
performance is similar to the PSO, because it is a new-
ly created algorithm. We propose the following tasks 
that could be performed to improve the performance 
of the algorithm: to use a fuzzy controller that controls 
the parameters of the chemical reactions, since these 
values are fixed during the execution of the test, with 
this we will be able to do at the beginning an explora-
tion and at the end focus on the exploitation. It is im-
portant to mention that the advantage of the algorithm 
is that we use it for minimizing time, less population 
(elements) and less iterations.
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