PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of a geometrically nonlinear elastoplastic gradient-enhanced damage model with incremental potential to composite microstructures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The prediction of inelastic processes like plastic deformations and cracks within the microstructure of modern man-made materials by realistic, yet simple and efficient continuum models remains a major task in material modelling. For this purpose, gradient-extended standard dissipative solids represent one of the most promising model classes, which is also formulated and applied in this work to investigate microscopic failure mechanisms in three exemplary three-dimensional composite microstructures. The model combines geometrically nonlinear isotropic elastoplasticity with an isotropic damage model with gradient-extension. For the numerical treatment, a variational constitutive update algorithm based on the exponential map is applied. The model is used to provide insight into the microscopic failure of a brittle woven composite material, a particle-reinforced plastic and a carbon fiber reinforced composite. The influence of different microstructural and material parameters on the overall failure behavior is characterized. Adaptive meshing is used to enable a refined numerical resolution of the cracked regions.
Słowa kluczowe
Rocznik
Strony
499--540
Opis fizyczny
Bibliogr. 71 poz., rys. kolor., wykr.
Twórcy
autor
  • Institute for Materials Science, Faculty of Engineering, Kiel University Kaiserstr. 2, 24143 Kiel, Germany
autor
  • Institute for Materials Science, Faculty of Engineering, Kiel University Kaiserstr. 2, 24143 Kiel, Germany
  • Institute for Materials Science, Faculty of Engineering, Kiel University Kaiserstr. 2, 24143 Kiel, Germany
Bibliografia
  • 1. B.D. Coleman, M.E. Gurtin, Thermodynamics with internal state variables, The Journal of Chemical Physics, 47, 2, 597–613, 1967.
  • 2. E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen, Springer, Berlin,1958.
  • 3. E.H. Lee, Elastic-plastic deformation at finite strains, Journal of Applied Mechanics,ASME, 36, 1, 1–6, 1969.
  • 4. A. Lion, Constitutive modelling in finite thermoviscoplasticity: a physical approach basedon nonlinear rheological models, International Journal of Plasticity, 16, 5, 469–494, 2000.
  • 5. W. Dettmer, S. Reese, On the theoretical and numerical modelling of Armstrong–Frederick kinematic hardening in the finite strain regime, Computer Methods in AppliedMechanics and Engineering, 193, 1-2, 87–116, 2004.
  • 6. G. Weber, L. Anand, Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids, Computer Methods in Applied Mechanics and Engineering, 79, 2, 173–202, 1990.
  • 7. A.L. Eterovic, J.-K. Bathe, A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress andstrain measures, International Journal for Numerical Methods in Engineering, 30, 6, 1099–1114, 1990.
  • 8. J.C. Simo, Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Computer Methods in Applied Mechanics and Engineering, 99, 1, 61–112, 1992.
  • 9. B. Halphen, Q. Nguyen, Generalized standard materials, Journal de Mécanique, 14, 1,39–63, 1975.
  • 10. M.A. Biot, Mechanics of Incremental Deformations, Wiley, New York, 1965.
  • 11. P.P. Castaneda, P. Suquet, Nonlinear composites, [in:] Advances in Applied Mechanics, 34, pp. 171–302, Elsevier, 1997.
  • 12. M. Ortiz, L. Stainier, The variational formulation of viscoplastic constitutive updates,Computer Methods in Applied Mechanics and Engineering, 171, 3-4, 419–444, 1999.
  • 13. A. Mielke, Evolution of rate-independent systems, Evolutionary Equations, 2, 461–559,2005.
  • 14. M. Ortiz, E. Repetto, Nonconvex energy minimization and dislocation structures inductile single crystals, Journal of the Mechanics and Physics of Solids, 47, 2, 397–462,1999.
  • 15. C. Carstensen, K. Hackl, A. Mielke, Non-convex potentials and microstructures infinite-strain plasticity, Proceedings of the Royal Society A, 458, 2018, 299–317, 2002.
  • 16. L. Kachanov, Time of the rupture process under creep conditions, Issue of the Academy of Sciences of the USSR Department of Technical Sciences, 8, 26–31, 1958.
  • 17. D. Hayhurst, F. Leckie, The effect of creep constitutive and damage relationships upon the rupture time of a solid circular torsion bar, Journal of the Mechanics and Physics ofSolids, 21, 6, 431–432, 1973.
  • 18. J. Lemaitre, Coupled elasto-plasticity and damage constitutive equations, Computer Methods in Applied Mechanics and Engineering, 51, 1, 31–49, 1985.
  • 19. T. Brepols, S. Wulfinghoff, S. Reese, Gradient-extended two-surface damage plasticity: micromorphic formulation and numerical aspects, International Journal of Plasticity, 97, 64–106, 2017.
  • 20. D. Krajcinovic, G. Fonseka, The continuous damage theory of brittle materials, part 1:general theory, Journal of Applied Mechanics, 48, 4, 809–815, 1981.
  • 21. J. Lemaitre, R. Desmorat, M. Sauzay, Anisotropic damage law of evolution, European Journal of Mechanics-A/Solids, 19, 2, 187–208, 2000.
  • 22. M. Fassin, R. Eggersmann, S. Stephan, S. Reese, Efficient algorithmic incorporation of tension compression asymmetry into an anisotropic damage model, Computer Methodsin Applied Mechanics and Engineering, 354, 932–962, 2019.
  • 23. J.-L. Chaboche, Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition, International Journal of Damage Mechanics, 1, 2, 148–171, 1992.
  • 24. S. Wulfinghoff, M. Fassin, S. Reese, A damage growth criterion for anisotropic damage models motivated from micromechanics, International Journal of Solids and Structures,121, 21–32, 2017
  • 25. Z. P. Bazant, G. Pijaudier-Cabot, Nonlocal continuum damage, localization instability and convergence, Journal of Applied Mechanics, 55, 2, 287–293, 1988.
  • 26. R. Peerlings, W. Brekelmans, J. De Vree, Gradient enhanced damage for quasibrittle materials, International Journal for Numerical Methods in Engineering, 39, 3391–3403, 1996.
  • 27. E. Fried, M.E. Gurtin, Continuum theory of thermally induced phase transitions based on an order parameter, Physica D: Nonlinear Phenomena, 68, 3-4, 326–343, 1993.
  • 28. M.E. Gurtin, Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance, Physica D: Nonlinear Phenomena, 92, 3-4, 178–192, 1996.
  • 29. M.E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-straingradients, Journal of the Mechanics and Physics of Solids, 48, 5, 989–1036, 2000.
  • 30. S. Wulfinghoff, T. Böhlke, Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics, Proceedings of the Royal Society A, 468, 2682–2703, 2012.
  • 31. M. Ziemann, Y. Chen, O. Kraft, E. Bayerschen, S. Wulfinghoff, C. Kirchlechner, N. Tamura, T. Böhlke, M. Walter, P. Gruber, Deformation patterns incross-sections of twisted bamboo-structured Au microwires, Acta Materialia, 97, 216–222,2015.
  • 32. A. Alipour, S. Reese, B. Svendsen, S. Wulfinghoff, A grain boundary model considering the grain misorientation within a geometrically nonlinear gradient-extended crystal viscoplasticity theory, Proceedings of the Royal Society A, 476, 2235, 20190581, 2020.
  • 33. B. Bourdin, G.A. Francfort, J.-J. Marigo, The variational approach to fracture, Journal of Elasticity, 91, 1-3, 5–148, 2008.
  • 34. B. Bourdin, G.A. Francfort, J.-J. Marigo, Numerical experiments in revisited brittle fracture, Journal of the Mechanics and Physics of Solids, 48, 4, 797–826, 2000.
  • 35. C. Kuhn, R. Müller, A continuum phase field model for fracture, Engineering Fracture Mechanics, 77, 18, 3625–3634, 2010.
  • 36. C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independentcrack propagation: robust algorithmic implementation based on operator splits, ComputerMethods in Applied Mechanics and Engineering, 199, 45, 2765–2778, 2010.
  • 37. C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, International Journal for Numerical Methods in Engineering, 83, 10, 1273–1311, 2010.
  • 38. G.A. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, Journal of the Mechanics and Physics of Solids, 46, 8, 1319–1342, 1998.
  • 39. R. Alessi, J.-J. Marigo, S. Vidoli, Gradient damage models coupled with plasticity : variational formulation and main properties, Mechanics of Materials, 80, 351–367, 2015.
  • 40. C. Kuhn, T. Noll, R. Müller, On phase field modeling of ductile fracture, GAMMMitteilungen, 39, 1, 35–54, 2016.
  • 41. C. Miehe, F. Aldakheel, A. Raina, Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory, International Journal of Plasticity, 84, 1–32, 2016.
  • 42. C. Miehe, A multi-field incremental variational framework for gradient-extended standard dissipative solids, Journal of the Mechanics and Physics of Solids, 59, 898–923, 2011.
  • 43. W. Han, B.D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis,Springer, 1999.
  • 44. J. Lemaitre, How to use damage mechanics, Nuclear Engineering and Design, 80, 2,233–245, 1984.
  • 45. S. Forest, Micromorphic approach for gradient elasticity, viscoplasticity, and damage,Journal of Engineering Mechanics, 135, 117–131, 2009.
  • 46. R.B. Seymour, Origin and early development of rubber-toughened plastics, [in:] RubberToughened Plastics, chapter 1, 3–13, 1989.
  • 47. A.C. Garg, Y.-W. Mai, Failure mechanisms in toughened epoxy resins – a review, Composites Science and Technology, 31, 3, 179–223, 1988.
  • 48. L.T. Manzione, J.K. Gillham, C.A. McPherson, Rubber-modified epoxies. I. Transitions and morphology, Journal of Applied Polymer Science, 26, 3, 889–905, 1981.
  • 49. R. Bagheri, B.T. Marouf, R.A. Pearson, Rubber-toughened epoxies: a critical review, Polymer Reviews, 49, 3, 201–225, 2009.
  • 50. A.F. Yee, R.A. Pearson, Toughening mechanisms in elastomer-modified epoxies. Part1: Mechanical studies, Journal of Materials Science, 21, 2462–2474, 1986.
  • 51. Y. Huang, A.J. Kinloch, Modelling of the toughening mechanism in rubber-modifiede poxy polymers, Journal of Materials Science, 27, 2763–2769, 1992.
  • 52. G. Giannakopoulos, K. Masania, A.C. Taylor, Toughening of epoxy using core-shellparticles, Journal of Materials Science, 46, 327–338, 2011.
  • 53. E. van der Giessen, T. Seelig, Computational modeling of rubber-toughening in amorphous thermoplastic polymers: a review, International Journal of Fracture, 196, 1-2, 207–222, 2015.
  • 54. D. Koblar, J. Škofic, M. Boltežar, Evaluation of the Young’s modulus of rubber like materials bonded to rigid surfaces with respect to Poisson’s ratio, Strojniškivestnik –Journal of Mechanical Engineering, 60, 7-8, 506–511, 2014.
  • 55. R. Smit, W. Brekelmans, H. Meijer, Prediction of the large-strain mechanical response of heterogeneous polymer systems: local and global deformation behaviour of a representative volume element of voided polycarbonate, Journal of the Mechanics and Physicsof Solids, 47, 2, 201–221, 1999.
  • 56. On cavitation, post-cavitation and yield in amorphous polymer-rubber blends, Journal ofthe Mechanics and Physics of Solids, 47, 4, 843–876, 1999.
  • 57. K. Pijnenburg, E. Van der Giessen, Macroscopic yield in cavitated polymer blends,International Journal of Solids and Structures, 38, 20, 3575–3598, 2001.
  • 58. H.E.H. Meijer, L.E. Govaert, Multi-scale analysis of mechanical properties of amorphous polymer systems, Macromolecular Chemistry and Physics, 204, 2, 274–288, 2003.
  • 59. D.K. Rajak, D.D. Pagar, P.L. Menezes, E. Linul, Fiber-reinforced polymer composites: manufacturing, properties, and applications, Polymers, 11, 10, 2019.
  • 60. G. Gao, Y. Li, Mechanical properties of woven glass-fiber reinforced polymer composites, Emerging Materials Research, 5, 2016.
  • 61. R.L. Taylor, FEAP – Finite Element Analysis Program, http://www.ce.berkeley/feap,2014.
  • 62. D. Quan, A. Ivankovic, Effect of core–shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer, Polymer, 66, 16–28, 2015.
  • 63. B.A. Bednarcyk, B. Stier, J.-W. Simon, S. Reese, E.J. Pineda, Meso-and microscale modeling of damage in plain weave composites, Composite Structures, 121, 258–270,2015.
  • 64. A. Melro, P. Camanho, F.A. Pires, S. Pinho, Numerical simulation of the non-linear deformation of 5-harness satin weaves, Computational Materials Science, 61, 116–126,2012.
  • 65. N. Naik, P. Shembeka, Elastic behavior of woven fabric composites: I—lamina analysis,12, 2196–2225, 1992.
  • 66. S. Géhant, C. Fond, R. Schirrer, Criteria for cavitation of rubber particles: influence of plastic yielding in the matrix, International Journal of Fracture, 122, 3, 161–175, 2003.
  • 67. F. Guild, A. Kinloch, A. Taylor, Particle cavitation in rubber toughened epoxies: therole of particle size, Journal of Materials Science, 45, 14, 3882–3894, 2010.
  • 68. G. Jacob, J. Starbuck, J. Fellers, S. Simunovic, Effect of fiber volume fraction, fiber length and fiber tow size on the energy absorption of chopped carbon fiber-polymer composites, Polymer Composites, 26, 293–305, 2005.
  • 69. E. Totry, J.M. Molina-Aldareguía, C. González, J. LLorca, Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites, Composites Science and Technology, 70, 6, 970–980, 2010.
  • 70. S. Yoon, N. Takano, Y. Korai, Some influential factors for crack formation, Journalof Materials Science, 32, 3, 1987.
  • 71. M. Mehdikhani, L. Gorbatikh, I. Verpoest, S. Lomov, Voids in fiber-reinforced polymer composites: a review on their formation, characteristics, and effects on mechanical performance, Journal of Composite Materials, 53, 002199831877215, 2018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3682af5-4d10-450d-a2d6-f4c30bc716f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.