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The prediction of inelastic processes like plastic deformations and cracks
within the microstructure of modern man-made materials by realistic, yet simple
and efficient continuum models remains a major task in material modelling. For
this purpose, gradient-extended standard dissipative solids represent one of the most
promising model classes, which is also formulated and applied in this work to investi-
gate microscopic failure mechanisms in three exemplary three-dimensional composite
microstructures. The model combines geometrically nonlinear isotropic elastoplas-
ticity with an isotropic damage model with gradient-extension. For the numerical
treatment, a variational constitutive update algorithm based on the exponential map
is applied. The model is used to provide insight into the microscopic failure of a brittle
woven composite material, a particle-reinforced plastic and a carbon fiber reinforced
composite. The influence of different microstructural and material parameters on the
overall failure behavior is characterized. Adaptive meshing is used to enable a refined
numerical resolution of the cracked regions.
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1. Introduction

While structural applications of composite materials are increasing
in several engineering fields where high stiffness and strength-to-weight ratios
and long fatigue life are required, there is always room for optimization to en-
sure optimum performance especially when severe operational constraints are
imposed, therefore composite structures are usually tailored, depending on spe-
cific objectives. In particular, the enhancement of the mechanical properties of
novel composite materials has always been of high interest for designers with
a special focus on properties relevant to strength and service life to meet re-
quirements imposed by the industrial application involved. Indeed, aware that
the behavior of the composite materials is significantly influenced by the under-
lying microstructure, this work aims to investigate this effect numerically which
could allow for a combination between the material microstructural parameters
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in order to obtain an optimized composite material in terms of performance.
Admittedly, experimental investigations could provide a clear overview of the
effect of the microstructural parameters on the mechanical properties. However,
quantifying this effect experimentally and finding the best combination between
parameters leading to the best performance would be extremely expensive in
terms of money, time, and effort. And here manifests itself the requirement of
the development of a computational tool in order to carry out such investiga-
tions which is the aim of the present work. To reach this goal, a campaign of
numerical tests has been conducted through a micro-scale numerical study aim-
ing to a quick and cost-effective prediction of the overall mechanical properties
of three exemplary composite materials with different microstructures. Indeed,
a geometrically nonlinear elastoplastic gradient-enhanced damage model with
incremental potential has been applied to (a) woven glass fiber/epoxy compos-
ite, (b) core-shell ruber (CSR) particles/epoxy composite, and (c) unidirectional
carbon fiber/epoxy composite.

The prediction of inelastic processes like plastic deformations and crackswithin
the micro-structure of novel composite materials by realistic, yet simple and effi-
cient continuummodels remains a major task in material modeling. We cite in the
following overview an (incomplete) list of the most competitive models developed
and applied for this purpose. Indeed, phenomenological models of geometrically
nonlinear elastoplasticity nowadays mostly build on the concept of internal vari-
ables [1] and the multiplicative decomposition of the deformation gradient into
elastic and plastic parts [2, 3]. An additional decomposition of the plastic part
yields a conceptually sound basis for kinematic hardening [4, 5]. Often, the plastic
deformation is assumed to be incompressible, which poses special challenges on
the numerical treatment, but can exactly be described using, e.g., time integration
algorithms based on the exponential map [6–8, and many more]. This approach
is naturally (but not necessarily) accompanied by logarithmic (Hencky) strain
measures. Many of the aforementioned models fall into the class of generalized
standard materials [9], where a dissipation potential defines the dissipative pro-
cesses and the constitutive evolution equations (see also [10]). If the dissipation
potential meets certain conditions, the material model is automatically guaran-
teed to obey the second law of thermo- dynamics. Such models have not only
been used to model material behavior on the structural level but also enabled
important developments in the field of microscopic material modelling, e.g., in
the context of homogenization of elastoplastic microstructures (for an overview
see [11]). An important milestone in this regard were so-called ’variational consti-
tutive updates’, i.e., the generalization of incremental potentials to the algorithmic
context in the sense that the time-discrete model is based on a potential, which is
consistent with its time continuous counterpart in the limit case of infinitesimal
time steps [12]. Amongst other things, the potential-based structure has the ad-
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vantage that it does not only open new doors for time discretization schemes but
also for mathematical analysis (e.g., [13]) and microstructure evolution modelling
(e.g., [14, 15]). Besides plastic deformations, continuum damage mechanics, as
a second major topic in the field of inelastic deformations, has grown to an im-
portant field in material modelling since the pioneering work of Kachanov [16].
Phenomenological internal variables, describing damage on a structural scale,
include scalars ( [17–19] amongst many others), vectors (e.g., [20]) or tensors of
various order (e.g., [21, 22]), which bears the risk of hidden conceptual prob-
lems and unphysical behavior (see, e.g. [23, 24]). At some point of the deforma-
tion process, damage usually leads to localization effects, indicating the onset of
a macroscopic crack. Damage models without internal length scale then lead to
an artificially vanishing dissipation (if the mesh is continuously refined). There-
fore, nonlocal models (e.g., [25]) have been proposed and were further developed
towards gradient-extended models like implicit gradient models [26]. More recent
works in many cases introduce generalized stresses and tractions work-conjugate
to the inelastic variable and its gradient in the sense of Gurtin [27, 28], a concept
being also extensively used in gradient plasticity for the modelling of size effects
(e.g., [29–32]). Phase field models of fracture are closely related to that [33–37],
which however originated from the idea of regularizing a Griffith-like energy func-
tional [38] and had a tremendous impact on countless subsequent publications.
Generalizations towards elastoplasticity can be found in, e.g., [39–41]. A formal
framework for gradient-extended standard dissipative solids has been formulated
in [42]. Based on all these models and studies, a geometrically nonlinear isotropic
elasto-plastic model and an isotropic gradient-extended damage model have been
developed and combined to characterize the non-linear elastoplastic behavior of
particle-reinforced plastics and fiber-reinforced plastics as well as to investigate
the microscopic failure in these complex composite micro-structures. In this work,
a geometrically nonlinear gradient-extended isotropic damage-plasticity model is
considered, which combines various model ingredients from the literature. The
performance of the model is then used to investigate three exemplary compos-
ite types (woven composite, particle- and fiber-reinforced) and the influence of
various microstructural features as well as the material properties on the overall
composite performance. The study is purely theoretical. A detailed comparison
with experimental results remains a task for the future.

2. Model formulation

2.1. Kinematics

The model makes use of the multiplicative decomposition of the deformation
gradient F into elastic and plastic parts Fe and Fp [2, 3], and the polar decom-
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position into a proper orthorgonal rotation tensor R and the positive definite
right and left stretch tensors U and V:

(2.1) F = Grad(x(X, t)) = FeFp = RU = VR.

Here, x and X denote the position vectors in the current configuration V and
initial configuration V0, respectively. The right plastic Cauchy–Green tensor Cp,
left elastic Cauchy–Green tensor be and the elastic Hencky strain εe are given
by

(2.2) Cp = Fp>Fp, be = FeFe>, εe =
1

2
ln be.

Furthermore, the plastic velocity ‘gradient’ Lp and its symmetric part Dp read

(2.3) Lp = ḞpFp−1, Dp = sym(Lp) =
1

2
Fp>ĊpFp.

Plastic incompressibility is enforced by the constraint

(2.4) det Fp = 1,

which can be shown to be equivalent to the requirement tr(Dp) = 0.

2.2. Free energy and dissipation potential

The free energy ψ is assumed to take the following form (compare, e.g.,
[39–41]):

(2.5) ψ = g(D)
(
ψe+(εe)+βσy0α+ψp(α)

)
+ψe−(εe)+

1

2
ge

c

(
D2

l
+l‖Grad(D)‖2

)
.

Here, g(D) is a degradation function which is dependent on the damage variable
D (in this work g(D) = (1−D)2), σy0 is the initial yield stress, α is an internal
plastic hardening variable, l denotes an internal length parameter, ge

c is the
fracture energy in the elastic brittle case (i.e., for σy0 → ∞) and β ∈ [0, 1] is
a material parameter, which is further explained below. Moreover, ‖ • ‖ is the
L2-norm, ψp denotes the plastic hardening potential and the elastic energy ψe is
split into a tension part ψe+ and a compression part ψe− which are assumed to
be given by (compare [8])

ψe+ =
λ

2
〈tr(εe)〉2 + µεe : εe,

ψe− =
λ

2
〈−tr(εe)〉2,

(2.6)
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with λ and µ as the first and second Lamé-constants, respectively, and 〈x〉 =
(x+ |x|)/2.

For D = 0 (undamaged material), the free energy thus corresponds to the
geometrically nonlinear J2-flow theory with isotropic hardening presented in [8]1,
which has been used and extended by numerous authors. In addition, we include
the possibility to model a purely energetic yield stress σy0 (for β = 1 in Eq. (2.5)),
a purely dissipative yield stress (for β = 0, see also the dissipation potential in
Eq. (2.10) below) and any intermediate choice. This allows, for example, to
properly account for a given Taylor-Quinney coefficient. The storage of elastic
and plastic energy contributions is assumed to drive the damage of the material,
except for the compression part ψe− (Eq. (2.6)). Thus, they are multiplied by the
degradation function g(D) in Eq. (2.5), i.e., the related energy is released when
the material is damaged. Finally, the last summand in Eq. (2.5) is consistent with
the regularized crack surface energy for the elastic brittle case (see, e.g., [36]),
which is well-known to be consistent (in the sense of Γ-convergence) with the
Griffith-model.

The hardening potential ψp is assumed to be a convex function with

(2.7) q =
∂ψp

∂α
≥ 0.

For example, in the simple case of linear hardening

(2.8) ψp(α) =
Hp

2
α2

with hardening modulus Hp. Using Eqs. (2.5) and (2.6), it is seen later that the
Kirchhoff-stress τ is given by

(2.9) τ = 2be∂ψe

∂be
=
∂ψe

∂εe
= g(D)

(
λ〈tr(εe)〉I + 2µεe︸ ︷︷ ︸

τ 0+

)
− λ〈−tr(εe)〉I.

The dissipation potential φ is assumed to be given by (compare [43])

(2.10) φ(Dp, α̇) =

{√
2
3(1− β)σy0‖Dp‖ if α̇ ≥

√
2
3‖D

p‖ ∧ tr(Dp) = 0,

∞ else.

Here, the ’∞’-branch ensures that: 1) tr(Dp) = 0, which corresponds to the
aforementioned plastic incompressibility constraint and 2) α̇ ≥

√
2/3‖Dp‖.

The free energy density ψ and the dissipation potential φ enable the con-
struction of an integral incremental potential Π (given at a later point), the

1It is noted that the J2-flow theory is only one application of the framework presented in [8].
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minimization conditions of which deliver all required model equations. This min-
imization also applies to the time-discrete counterpart Π∆ of Π. In the case of
infinitesimal time steps, the time-continuous and time-discrete models coincide.
Therefore, we restrict all further steps to the time-discrete setting, noting that
the time-continuous theory is recovered in the aforementioned limit case. The
model equations, as summarized in Box 1, are derived below together with suit-
able boundary conditions. The equations comprise the linear momentum balance
equation, an analogous equation related to D, which we interpret as micro-force
balance in the sense of Gurtin [28], the elastic law, the yield criterion and the
flow rule. Note from the yield criterion that the material parameter β enables
a split of the initial yield stress σy0 into a part βσy0, being degraded by the
function g(D) and a constant part (1− β)σy0.

Box 1: Model equations. Here, P denotes the first Piola-Kirchhoff stress, ρ0 is
the mass density in the reference configuration, b is the body force and ‘∆’

denotes the Laplace operator.

1. Quasi-static linear momentum balance:

0 = Div P + ρ0b; with P = τF−> and τ = ∂ψe

∂εe .
2. Micro-force balance:

0 = g′(D)
(
ψe+(εe) + βσy0α+ ψp(α)

)
+ ge

c

(
D
l − l∆D

)
.

3. Yield criterion

f = g(D)
(
‖τ ′0+‖ −

√
2
3(βσy0 + q)

)
−
√

2
3(1− β)σy0 ≤ 0.

4. Flow rule (with plastic multiplier γ):

Lvbe = ReDpRe> = γ
τ ′0+

‖τ ′0+‖
,

where Lvbe = F
˙

Cp−1F> = ḃe − lbe − bel> is the Lie derivative of be.

It is noted that without damage (D = 0, g(D) = 1), the yield criterion
(Box 1) is identical to the one of the aforementioned J2-flow theory with isotropic
hardening. For the choice β = 1, the yield criterion takes the same form as in
a model without damage (since then, the yield criterion may be divided by g(D)
without consequences). This choice thus corresponds to the ’effective stress’ con-
cept (see [44]), and elasticity and plasticity together form the driving force2

for damage (often the plastic energy significantly exceeds the elastic energy).
In contrast, for β < 1, the influence of plasticity on damage decreases. For
example, for the extreme (usually unrealistic) case β = 0 and ideal plasticity
(no hardening), damage would result merely from elastic energy storage, as the

2Formally, one may consider the first summand of the right hand side of the micro-force
balance in Box 1 as damage driving force due to elastic and plastic energy storage.
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driving force for damage in the micro-force balance (see Box 1) would then
read g′(D)ψe+(εe).

Remark. As an alternative to Eq. (2.5), one may use for the gradient part a
micromorphic formulation [45] by introducing a micromorphic counterpart Dχ of
the damage variable D and an additional energy contribution Hχ(Dχ −D)2/2.
This leads to an equivalent model in the case Hχ → ∞. In practice, one typi-
cally penalizes deviations of the two variables by choosing sufficiently high values
for Hχ. A material subroutine containing the code including the related algo-
rithmic details is published together with this manuscript.

2.3. Time discretization

2.3.1. Kinematics. In the following, the index (•)tr denotes the trial state, the
index (•)n denotes quantities from the previous time step and the index (•)n+1

denotes quantities of the current time step. The latter is omitted in most cases
for simplicity. The trial state describes the local state, assuming that no plastic
deformation occurs in the current time step:

(2.11) Fetr = FFp−1
n , betr = FetrFetr> = FCp−1

n F>.

Additionally, in analogy to the definition of the polar decomposition in (2.1) and
the Cauchy–Green tensors in (2.2), the following tensors are defined

(2.12) fp = FpFp−1
n = rpup, cp = fp>fp, bp = fpfp> = rpcprp>.

Finally, the following relations can be found

(2.13) Fe = VeRe = Fetrfp−1, be = Fetrcp−1Fetr>.

2.3.2. Time-discrete global incremental potential. A possible time discrete ver-
sion of the dissipation potential (see Eq. 2.10), being consistent with an expo-
nential map based update of the plastic deformation (e.g., [6, 7], is given by
(compare [12])

(2.14) φ∆ =

{√
2
3(1− β)σy0‖1

2 ln cp‖ if ∆α ≥
√

2
3‖

1
2 ln cp‖ ∧ det cp = 0,

∞ else.

The time discrete total potential π∆ is given by

(2.15) π∆ = ψ − ψn − φ∆, π = lim
∆t→0

1

∆t
π∆.

Remark. It is noted that, due to Eq. (2.7) (which implies ∂ψ/∂α ≥ 0) the
minimization of π∆ with respect to α implies that α ’tries to be as small as
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possible’. In combination with the inequality constraint ∆α ≥
√

2/3‖1
2 ln cp‖ in

Eq. (2.14), the equality sign applies, i.e., ∆α =
√

2/3‖1
2 ln cp‖ or α̇ =

√
2/3‖Dp‖

in the time-continuous case. Thus, α represents the conventional equivalent plas-
tic strain measure which is used to model isotropic hardening.

Further, we define the global incremental potential

(2.16) Π∆ =

∫
V0

π∆ dV −
∫
V0

ρ0b · udV −
∫
∂V0t

t̂ · udA

with the traction vector t̂, being prescribed on the traction boundary ∂V0t, while
the displacements u are assumed to be prescribed on the Dirichlet boundary
∂V0u. The variations of Π∆ with respect to u and D yield the weak form of the
first two equations in Box 1:∫

V0

τ : dδ︸ ︷︷ ︸
P :δF

dV −
∫
V0

ρ0b · δu dV −
∫
∂V0t

t̂ · δu dA = 0,(2.17)

∫
V0

(
∂π∆

∂D
δD +

∂π∆

∂Grad(D)
·Grad(δD)

)
dV = 0,(2.18)

with dδ = sym(δFF−1) and P = ∂ψ/∂F . The displacement variation δu is
assumed to vanish on ∂V0u. It is then a standard exercise to show that τ =
2be∂ψe/∂be = ∂ψe/∂ε

e (see also [8]) and that3 equations 1 and 2 in Box 1
as well as the boundary conditions t̂ = PN on ∂V0t and Grad(D) ·N = 0
on ∂V0 (where N is the external normal vector) follow from the stationarity
conditions (2.17) and (2.18) of Π∆ with respect to u and D. Finally, it is noted
that also mixed boundary conditions are possibile (i.e., ∂V0t and ∂V0u overlap), if
the displacement is prescribed in certain coordinate directions and the tractions
in the remaining directions in the overlap region.

2.4. Local stationarity conditions

The internal variables are obtained from a local minimization of π∆ (see
below). Using the definitions (2.11) and (2.12) one can formulate

(2.19) betr = FebpFe> = VeRebpRe>Ve = beRebpRe>,

where the last equality follows from the fact that be = (Ve)2 and RebpRe> are
coaxial (with bp = fpfp>, see Eq. (2.12)). For completeness, a derivation of the
aforementioned coaxiality is given in Appendix B.

3By application of the chain rule and the Gauss theorem.
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As a consequence, one may write (e.g., [8])

(2.20) ε = εetr =
1

2
ln betr =

1

2
ln be +

1

2
ln RebpRe> = εe + εp

with

(2.21) tr(εp) = 0 ⇔ det cp = 0.

Note that in the equations above, εetr is an incremental algorithmic strain mea-
sure and not related to the total deformation4. Furthermore, with (2.6) it is
possible to reformulate (2.5) as follows

ψ = g(D)

(
λ

2
〈tr(εe)〉2 + µεe : εe + βσy0α+ ψp(α)

)
+
λ

2
〈−tr(εe)〉2(2.22)

+
1

2
ge

c

(
D2

l
+ l‖Grad(D)‖2

)
.

Since π∆ is to be minimized with respect to ∆α, the inequality in the ’if’-branch
of Eq. (2.14), together with Eq. (2.7), yields

(2.23) ∆α =

√
2

3

∥∥∥∥1

2
ln cp

∥∥∥∥ =

√
2

3
‖εp‖,

where it has been exploited that ‖ln cp‖ = ‖ln rpcprp>‖ = ‖ln bp‖ = ‖2εp‖.
Thus, the time-discrete dissipation potential from (2.15) becomes

(2.24) φ∆ =

√
2

3
(1− β)σy0‖εp‖,

if one constrains εp to be traceless. Clearly, the total potential π∆ (Eq. (2.15)) is
formally equivalent with its small strain counterpart [8, 12]. A simple calculation
then shows that minimizing the potential with constraints

(2.25) inf
εp=εp′

π∆(ε,D, εp) = inf
∆γ≥0

inf
n=n′
‖n‖=1

π∆(ε,D,∆γn),

yields the flow rule

(2.26) εp = ∆γn,

4Further note that (compare, e.g., [8]) the tensor RebpRe> is unique, even if the elasto-
plastic split remains unspecified upon a rigid body rotation/proper orthogonal tensor Q,
i.e., with F = FeFp = FeQ>QFp = F̂eF̂p, F̂e = VeR̂e = VeReQ> = FeQ> and
b̂p = F̂pF̂p

>
= QbpQ>, it follows that R̂eb̂pR̂e

>
= RebpRe>.
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where n is the plastic flow direction given by

(2.27) n =
εe′

‖εe′‖
=

ε′

‖ε′‖
=

τ tr′

‖τ tr′‖
.

The yield criterion f represents the minimization condition with respect
to ∆γ ≥ 0:

(2.28) f = − ∂π∆

∂∆γ
= g(D)

(
‖ 2µεe′︸ ︷︷ ︸
τ ′0+

‖ −
√

2

3
(βσy0 + q)

)
−
√

2

3
(1− β)σy0 ≤ 0,

which completes the model description.
For the global Newton scheme, the algoritmic tangent operators are also

required. These are discussed in Appendix C.

3. Materials and methods

Epoxy resins are highly competitive among thermoset materials in industrial
applications owing to their excellent thermal and chemical resistance as well as
the high tensile strength and stiffness they exhibit. However, they suffer from
a main drawback restricting their usage in many practical applications which
is their limited resistance to the initiation and the growth of existing cracks.
Therefore, researchers have become increasingly interested in the enhancement
of the toughness of epoxy resins to ensure their reliability [46]. Several studies
have been carried out for this purpose by adopting the same solution which is
the addition of a stiff or soft second phase to the resin [47]. A stiff second phase,
used to improve the toughness of epoxies, can be organic or inorganic. The latter
is widely used in this purpose such as carbon and glass fibers. Soft reinforcing
particles often used are compliant rubbery particles.

3.1. Core-shell rubber particles modified epoxy

The rubber-toughening technique includes two conventional methods. In the
first one, the rubber is incorporated initially into the matrix as a miscible liquid,
and then using a reactive additive, the second phase particles are formed. In this
kind of compounds, the volume fraction and the size of the rubber particles are
influenced by the degree of compatibility between the two phases and also the
kinetics of gelation [48] which makes the control of the compound morphology
very difficult. This could be considered as a critical drawback as the fracture
toughness depends highly on the morphology of the compounds [49]. In the
second method, the second phase is preformed and then included in the resin.
This second phase is identified as core-shell particles with a rubbery core and
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a thin layer of a glassy shell. The rubbery core ensures the improvement of the
toughness. The outer glassy shell is designed to be compatible with the resin, it
improves the dispersion of the rubbery particles within the matrix and prevents
their coalescence [50].

The control of the particles’ size and the volume fraction of the second phase
is possible if core-shell particles are incorporated. This makes this modifiers gen-
eration one of the most preferred ones for the purpose of polymer toughening [49].
Therefore, in the present study, interest has been granted to investigate the ex-
tent of the contribution of this filler to the toughening of the epoxy. Basically, the
‘toughening’ is the increase of the ability of the material to absorb energy and
deform plastically before the fracture. The incorporation of rubbery particles in
the epoxy resin involves the apparition of several energy dissipative mechanisms
when the compound is loaded, such as shear banding in the epoxy matrix be-
tween the rubbery particles, the cavitation of the rubbery particles, the plastic
deformation, the growth of the voids initiated by cavitation of the particles and
the rubber-bridging mechanism [50–52]. As reported in [50], the particles’ cavi-
tation is not only a dissipative mechanism but also the mechanism that triggers
the whole toughening process. Indeed, the voids resulting from the cavitation
of the rubber particles act as stress concentrators and relieve the triaxial stress
state ahead of cracks. Therefore, the fracture of the compound is delayed by
allowing the plastic void growth and the shear banding in the matrix instead.

The overview article [53] discusses computational models for the fundamen-
tal toughening mechanisms ‘crazing’ and ‘shear yielding’ in rubber-particle en-
hanced polymers including cavitation, void growth and coalescence.

As the toughening is basically equivalent to the energy absorbed through the
plastic growth of the voids and the shear yielding in the matrix between these
voids, it is obvious to assume that the improvement of toughness depends highly
on the volume fraction of the particles, on their size as well as their distribution
in the matrix. The effect of these parameters on the behavior of the rubber-
epoxy compounds is commonly examined by several experimental studies. The
review [49] outlines the most important findings of these investigations. In the
same context, this study aims to characterize numerically the behavior of the
epoxy being modified with rubbery particles for different micro-structures.

It is obvious that a detailed model would ensure the identification of the var-
ious energy-dissipating mechanisms involved when rubbery nano-particles are
added as well as the quantification of their contributions to the toughening to
epoxy. However, as described, e.g. in [51] and [52], the plastic shear banding in
the epoxy matrix and the plastic void growth are the main toughening mecha-
nisms. This simplifying assumption has been adopted in the present study and
the cavitation mechanism has been neglected. Indeed, the particles have been
represented as spherical voids dispersed in the matrix. Moreover, it has been re-
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ported that rubber particles cavitate at a relatively low-stress level [52] and have
a stiffness much smaller than that of the surrounding polymer (Young’s modulus
of the rubber phase is around 4 MPa, [54]). This supports the assumption of the
representation of the particles as voids. The same approach has been adopted in
several studies [55–58].

Therefore, to characterize the behavior of the overall CSR/epoxy composite
only one component has been considered which is the epoxy matrix, whose typi-
cal properties are presented in Table 1. And the investigation of the effect of the
microstructural morphology on its mechanical properties has involved the vari-
ation of the dimensions, the volume fraction, and the distribution of the voids
representing the incorporated particles, in addition to the variation of the epoxy
properties initially considered.

Table 1. Material properties of the epoxy matrix of the CSR/epoxy composite.

Young’s modulus Initial yield stress Elastic energy release rate Poisson’s ratio
E [MPa] σy0 [MPa] ge

c [J/m2] ν

3000 80 50 0.35

Hardening modulus Internal length Coupling modulus Yield stress parameter
Hp [MPa] l [µm] Hχ [MPa] β

10 0.0125 106 1

3.2. Carbon fiber reinforced epoxy

The performance of FRP (fiber-reinforced polymer) composite materials pre-
dominantly depends on their constituent elements and manufacturing tech-
niques. Therefore, various manufacturing techniques are used worldwide in the
industry to fabricate optimized FRP composite materials for the desired appli-
cation [59]. The filament winding is an automated composite fabrication tech-
nique competitive for the manufacturing of thick-walled components, enabling
a fast production with few defects. This technique involves continuous wind-
ing of impregnated rovings of fibers in a resin bath just prior to application on
a «winding-core» while keeping them in tension. Despite the competitiveness of
this technique, the presence of manufacturing defects in the material is unavoid-
able. Voids are one of the most significant defects that could be generated during
the manufacturing of carbon fiber reinforced polymer (CFRP) composites which
represent regions unfilled with polymer and fibers. Their significance is due to
their high formation probability as well as to their considerable effect on the
mechanical properties of the composite and their contribution to the creation
of new damage mechanisms leading to failure. As a result of their importance,
voids are one of the most studied manufacturing defects. A numerical attempt
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to highlight the effect of this defect on the behavior of the CFRP material has
been made by the consideration of holes in different sizes and fractions when
modeling the CFRP microstructure.

In contrast to the CSRP (core-shell rubber particles) microstructure model,
the CFRP-model involves the definition and the implementation of two materials.
Indeed, microscopic unidirectional cylinders have been included in the matrix.
In addition to circular fibers, elliptical reinforcing fibers have been considered in
order to investigate the effect of the fiber shape on the overall composite behavior.
The volume fraction of the fibers also has been varied to investigate its effect on
the composite properties. The mechanical properties considered to simulate the
behavior of this material are gathered in Table 2. The epoxy properties are the
same as for the CSR/epoxy composite (except for the internal length which is
now l = 0.0625 µm)

Table 2. Elastic material properties of the constituents (matrix and fibers) of
the CFRP-model.

Carbon fibers Epoxy
Diameter 7µm –
Volume fraction 60% 40%
Longitudinal Young’s modulus 239000 MPa 3000 MPa
Transverse Young’s modulus 15000 MPa –
Longitudinal shear modulus 20000 MPa –
Transverse shear modulus 6000 MPa –
Longitudinal Poisson’s ratio 0.2 0.35
Transverse Poisson’s ratio 0.25 –

3.3. Woven fiber composite

The third material characterized is a woven glass fiber reinforced epoxy com-
posite. The manufacturing of this composite material consists of the continuous
weaving of glass fiber rovings in two mutually perpendicular directions after
being embedded in the epoxy resin. This composite provides bidirectional prop-
erties highly dependent on the microstructural parameters of the reinforcing
fibers such as the type, diameter, volume fraction and density [60]. Therefore,
simulations were performed to investigate the stress response and resistance to
fracture of a woven structure of rovings embedded in a brittle matrix as well as
the influence of the rovings’ vertical and lateral thickness on the overall woven
composite. The effect of the mechanical properties of each component (matrix
and rovings) on the failure behavior of the overall composite has been also high-
lighted. The major material properties chosen in this study are given in Table 3.
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Table 3. Material properties of epoxy matrix (M) and rovings (R) as
components of the woven fiber composite.

Young’s modulus Elastic energy release rate Poisson’s ratio
EM [MPa] ER [MPa] ge

c [J/m2] νM νR

3039 63647 133 0.36 0.213

4. Computational models

Computational modeling of composites with periodic microstructure can be
performed by the consideration of a periodic unit cell of the material which
is a small volume over which computation are made in order to estimate the
response of the whole composite behavior. Therefore a unit cell has been used
to conduct all simulations to investigate the impact of different material and
microstructural parameters on the behavior of the composites. Such unit cells

(a) (b) (c)
Area of Simulation

(d) (e)

Fig. 1. Materials unit cells: (a) 0.5µm×0.5µm×0.5µm cubic unit cell of the epoxy modified
with spherical CSR nano-particles (modelled as voids) of 50nm radius, (b) model of the

CFRP micro-structure with 60% of circular fibers, (c) model of the woven fiber composite
under uniaxial tension and constrained transversal contraction, (d) tensile boundary
conditions (BCs) with free lateral contractions (applied to (a) and (b)) and (e) shear

boundary conditions (applied to (b)). The arrows indicate prescribed displacements and the
dark regions constant displacements perpendicular to the specific surfaces. More details on

the boundary conditions can be found in the specific simulation sections below.
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should contain sufficient information about the reinforcing inclusions’ (particles
or fibers) size, volume fraction, type, orientation, and spatial distribution.

Indeed, to characterize the influence of different microstructural and mate-
rial parameters on the overall behavior of each material, comparative studies
have been carried out by the implementation of a Fortran code capable of in-
corporating inclusions of different shapes and sizes in the composite unit cell
according to the distribution and the volume fraction desired. The finite element
discretizations of the microscopic unit cell modeled to simulate the behavior of
the CSR particles modified epoxy, the carbon fibers reinforced epoxy and the
woven fiber-reinforced epoxy are shown respectively in Figs. 1a to 1c.

Concerning the boundary conditions, a tensile loading has been imposed in
terms of displacements on unit cells of the three micro-structures. Trilinear hex-
ahedral elements with reduced integration and hourglass stabilization have been
used. Subroutines where the mechanical constitutive behavior of the material is
defined have also been modified depending on the composite microstructure to
characterize. Indeed, several material and finite element subroutines have been
implemented based on the material model developed and presented above al-
lowing for the description of the elasto-plastic geometrically nonlinear behavior
of the materials involved. Carbon fibers in the CFRP microstructure have been
assumed to be transversally isotropic and its five independent elastic constants
are listed in Table 2, while the glass fibers reinforcing the woven fiber compos-
ite have been considered isotropic. The epoxy matrix has been modeled as an
isotropic elastic/elastoplastic solid for the three microstructures. All simulations
are executed by the finite element analysis software FEAP [61] and use a parallel

Core
38

1

D[-]

1.0

0.0

Fig. 2. Investigation of crack formation with adaptive mesh algorithm and parallelization.
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build (38 cores). To enable a refined numerical resolution, an adaptive meshing
technique has been applied at the level of cracked regions. Figure 2 shows an
exemplary section of the mesh adopted to investigate the failure behavior of the
woven fiber composite. It could be clearly noticed that the mesh is refined only
at regions of crack formation (damage variable D high) which are, inter alia,
regions of the high level of stress concentration at the crack tip. This same figure
highlights as well the use of the parallel build with 38 cores.

5. Simulations

5.1. Application of the model to woven glass fiber reinforced epoxy

Simulations were performed to investigate the stress response and resistance
to fracture of a woven structure of rovings embedded in a brittle matrix. There-
fore, a displacement controlled uniaxial tension test with one constrained and one
fully (traction-) free transversal contraction is performed on the 3-dimensional
modelled structure depicted in Fig. 1c. More precisely, the boundary condi-
tions applied to the unit cell in Fig. 1c were such that in the tensile direction
(=̂x-direction), the displacements in this direction on two opposed faces (with
face normals ±ex5) were prescribed. The displacements in the lateral directions
on these faces were free. On the top and bottom faces, zero-traction boundary
conditions were applied and on the remaining faces (left and right), symmetry
conditions were applied (compare Fig. 1c). For simplicity, matrix and rovings
are modelled as isotropic materials. The chosen material parameters are given
in Table 4, except for the cases where other parameters are explicitly given in
the text. Due to the exploitation of symmetries only one quarter of the structure
is meshed. Note that due to the thin nature of the sample the hexahedral ele-
ments are chosen to be significantly smaller in the dimension perpendicular to
the plane. Since in this section no plastic deformations are considered, the small
strain6 micromorphic model is applied. Plastic deformations are neglected, as
practically applied epoxies often show negligible plastic deformations in tensile
experiments conducted on the mm-scale (the scale of the woven composite), while
significant elastoplastic deformations are observed on smaller scales (e.g. [62]).
Large deformations are considered in a later section.

The monitoring of strains and stresses in the rovings, cracking in the matrix
and the texture over the course of the simulation are visualized in Fig. 3. At the
intersection of the rovings the maximum stresses and the initiation of cracking

5Here, ex is the unit vector in x-direction.
6The small strain model is described by Eq. (2.22) (with σy0 →∞⇒ α = 0, εp = 0), where

now ε is the infinitesimal strain tensor, in combination with the small strain counterparts of
the balance equations in Box 1 (basically replacing P by σ).
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normal strain in x-direction

normal stress in x-direction

cracks
(red color)

cracked surface

Fig. 3. Simulation of woven roving model with monitoring of strains, stresses and cracks.
Internal cracks are shown in the center (front) in red color.

in the matrix can be observed. This location of the matrix crack onset is in good
agreement with the simulations of the authors of [63] (compare also [64]), who
used an anisotropic damage model, but did not include gradient effects. The
maximum strains are found at the tips of the growing cracks.

Table 4. Material parameters of matrix (M) and rovings (R), the latter ones
assumed purely elastic (no damage).

λM [MPa] µM [MPa] λR [MPa] ge
c [J/m2] µR [MPa] l [mm] Hχ[MPa]

3085.9 1111.11 19489 133 26233 0.025 106/107

The onset of significant matrix failure is approximately determined in terms
of a crack initiation stress σ̂ and crack initiation strain ε̂ as shown in the overall
stress-strain diagram in Fig. 4. In the diagram, a linear elastic increase can be
observed and a (local) stress maximum σ̂ is reached at the strain ε̂. At that
point the formation of cracks in the matrix initiates and in the following the
crack propogation leads to a stress release. It is noted that the damage onset is
similar to the predictions in [63], despite the limited comparability, e.g., due to
different roving volume fractions. Only when the cracks fully traverse the sample
the stress increases again. For a maximum resistance to cracking it is therefore
interesting to find material and geometry parameters that maximize σ̂ and ε̂.

First, the influence of the roving vertical and lateral dimensions, i.e., the
thickness and the width, on σ̂ and ε̂ was investigated. The results are depicted
in Fig. 5. With increasing thickness of the roving a decrease in the overall stiff-
ness σxx/εxx in the linear-elastic regime and a decrease in the crack initiation
stress σ̂ are obtained. This may be explained by the fact that the undeformed
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Fig. 4. Stress strain diagram for uniaxial tension test. For the strain ε = ε̂ cracking in the
matrix initially starts and the stress reaches a maximum σ̂.

thicker rovings exhibit a rather undulated shape, while the thinner ones have
an almost flat appearance. It is therefore not surprising that the flatter rovings
are better qualified to carry macroscopically applied tensile stresses, since they
are less prone to elongate under tensile loads and thus alleviate the matrix ma-
terial in comparison to the more undulated thicker rovings. The results for the
crack initiation strain ε̂ are inconclusive. The dimensions (in mm) of the thinnest
structure depicted in the figure are 1× 1× 0.0625 and the major and minor half
axes of the rovings’ elliptic cross section are 0.2mm and 0.0125mm, respectively.
It should be mentioned that the simulation of the thinnest structure in Fig. 5a
was carried out with the material parameter l taking the value l = 0.0125mm,
since otherwise the crack width would have been clearly larger than the vertical
distance between the rovings. Decreasing l is known to increase the overall stress
for crack initiation in certain situations, which may explain the high value of σ̂
at the thickness ratio of 1 in Fig. 5a. Nevertheless, the results indicate a possible
advantage of vertically thinner rovings of the compound material. This finding
could be correlated to the conclusion drawn by [65] who conducted a numerical
and experimental analysis of the elastic behavior of plain weave fabric lamina.
In particular, the effect of the undulation and lamina thickness on the in-plane
elastic constants of E-glass/epoxy and T-300 carbon/epoxy has been investi-
gated, and it has been shown that the increase of the lamina thickness results
in a decrease of the elastic modulus of the overall composite which supports the
observation illustrated in Fig. 5.



Application of a geometrically nonlinear elastoplastic. . . 517

(a) Influence of thickness

0.01

0.014

1

1

1

2

2

2

4

4

4

8

8

8
14

19

24

80

260

σ̂
[M

P
a]

thickness ratio [-]

thickness ratio [-]

thickness ratio [-]
ε̂
[-
]

st
iff
n
es
s
σ
x
x
/ε

x
x
[G

P
a]

inconclusive
(b) Influence of width

0.013

0.019

0.50.5 11

160

200

240

280

σ̂
[M

P
a]

thickness ratio [-]thickness ratio [-]

ε̂
[-
]

71.5%

Fig. 5. (a) Influence of roving thickness on the stiffness σxx/εxx in the linear-elastic regime
and crack initiation stress σ̂ and strain ε̂ and (b) influence of roving width on σ̂ and ε̂. The

actual data points are indicated by the crosses.

Next, the influence of the roving width on σ̂ and ε̂ was investigated. Here,
the thicker structure (thickness ratio 1) is identical to the thinnest one from the
thickness comparison (thickness ratio 1). However, the matrix is slightly softer
(λM = 2592.6 MPa) in order to investigate the stiffness’ influence. The results
(see Fig. 5b) show a width increase by a factor of 2, an increase in σ̂ in the
order of 100MPa but a decrease in ε̂ by almost one third. As the rovings are
stiffer than the matrix, the macroscopically applied strain tends to localize more
in the matrix than in the rovings. For rovings with decreased width, the matrix
volume fraction increases and thus there is more matrix material available for
the aforementioned localization of the macroscopic strain. As a result, the overall
composite can endure higher strain values.
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Finally, the influence of Young’s modulus of the roving material ER and
the elastic energy release rate ge

c of the matrix material on the cracking resis-
tance was investigated. The results are depicted in Fig. 6. A higher value of
Young’s modulus of the rovings leads to an increase in σ̂ and a decrease in ε̂.
In case of an increased matrix elastic energy release rate both σ̂ and ε̂ are also
increased.
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Fig. 6. Influence of Young’s modulus E of roving material and elastic energy release rate ge
c

of matrix material on crack initiation stress σ̂ and strain ε̂ with E0
R = 47.49GPa and

νR = 0.25.

5.2. Application of the model to the core-shell rubber nano-particles reinforced
epoxy

A comparison between the tensile responses of a microscopic computational
unit cell including voids with different volume fractions and different sizes has
been carried out to investigate the effect of these micro-structural parameters on
the tensile behavior of the CSR particles modified epoxy. One can show that the
applied boundary conditions7 are consistent with the Hill–Mandel condition. The
effective value of Young’s modulus was obtained from the quotient E = σxx/εxx
in the initial linear-elastic regime. Other numerical tensile tests considering dif-
ferent matrix properties and using the same unit cell (see Fig. 1a) also have

7Here, the boundary conditions applied to the unit cell in Fig. 1a were such that the dis-
placements in the tensile direction (=̂x-direction) on two opposed faces. The displacements in
the lateral directions on these faces were free (=̂zero-traction Neumann-type boundary condi-
tions). On the lateral faces (i.e., the remaining four faces), zero-traction boundary conditions
were applied.
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been performed to check if this variation could improve the performance of such
composites. If not mentioned otherwise, the (isotropic) material properties in
Table 1 are applied.

5.2.1. Particle volume fraction effect. To investigate the effect of the particle
volume fraction on the mechanical properties of the modified matrix,
spherical voids with 50 nm radius were included in a cube with dimensions
0.5µm× 0.5µm× 0.5µm in an ordered arrangement as shown in Fig. 1a.
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Fig. 7. Effect of particle volume fraction (uniaxial loading) on (a) stress-strain responses,
(b) maximum strength, (c) amount of dissipated energy due to plastic deformation and

(d) stiffness. Here, ‘porosity’ denotes the particle volume fraction in %.

As mentioned before, the CSR-particles are modelled as voids, as particle
cavitation typically occurs in the overall elastic region and its influence on the
effective response is assumed small (see [66]). This approach may be enhanced in
the future by including cavitation criteria. Such a criterion is proposed, e.g., in
the numerical model in [67], which includes plasticity but no damage variable. For
different volume fractions between 0% and 11%, the corresponding stress-strain
relations, tensile strength σmax, stiffness E and dissipated energy are depicted in
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Fig. 7a to 7d, respectively. With increasing volume fractions the tensile strength
and stiffness decrease as shown in Figs. 7b and 7d. It is noted that the data in
Fig. 7b is in reasonable agreement with the experimental data reported in [62].

As explained above, the matrix material in the vicinity of the voids expe-
riences high stresses during the loading of the whole volume and their growth
makes the micro-structure absorb more energy before failure. Furthermore, as
shown in Fig. 7c the amount of dissipated energy at the stress maximum in-
creases with increasing number of particles. A larger dissipation means that the
material absorbs more energy when being plastically deformed and thus indi-
cates a larger toughness of the material. This is interpreted as follows. For 0%
particles (being modelled as voids), the material and elastoplastic deformation
are homogeneous. For a small volume fraction of voids, the strains in the initial
stage of the process are mainly localized in the vicinity of the growing voids,
where a significant amount of deformation energy is absorbed. The overall com-
posite thus absorbs more energy than a homogeneous matrix material due to
the inhomogeneous microscopic deformation field. This effect can be intensified
by increasing the initial volume fraction of the particles/voids. With ongoing
deformations the voids grow and deformation fields around the voids start to
interact until, finally, the voids coalesce. For larger initial void volume fractions,
the coalescence stage happens earlier. If the initial void volume fraction is too
large, coalescence happens soon after the onset of inelastic deformations, i.e., the
material is unable to absorb significant amounts of energy.

5.2.2. Particle size effect. For the investigation of nano-particle size effects on
the modified matrix behavior, different volume fractions for particles with 25 nm
and 50 nm radius were compared.

The resulting stress-strain diagrams for the 25 nm particles and the compari-
son of dissipated energy for both sizes are given, respectively, in Figs. 8a and 8b.
Similar effects as before can be seen with this model as well.

In summary, the results show a clear trend that an increase of the particle
volume fraction may improve the energy absorption capability of the material.
The curves also give a first quantitative impression of this effect, although further
research will be necessary in the future to investigate the influence of the unit
cell size, which is beyond the scope of this work.

5.2.3. Epoxy properties effect. The effect of initial yield stress σy0 and elastic
energy release rate ge

c on the compound behavior was investigated by tensile
tests with a volume fraction of 8% and particle size 25 nm. The corresponding
stress-strain diagrams are given in Fig. 9.

As expected, Fig. 9a shows that a lower yield strength results in an ear-
lier onset of plastic deformation. Therefore, up to certain load level, the dissi-
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pated inelastic energy is greater with lower yield strength. However, at the stress
maximum, the inelastic energy consumed is more important with higher yield
strength. The effect of the variation of the elastic energy release rate of the epoxy
on the behavior of the material is illustrated in Fig. 9b. Indeed, up to the frac-
ture, the different compounds with different values of ge

c show the same behavior
as well as the same dissipation of inelastic energy. This can be explained by the
fact that ge

c is a fracture property while the initial deformation stage is entirely
plasticity-dominated and the damage does not play a role initially.
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5.3. Application of the model to unidirectional carbon fibers reinforced epoxy

5.3.1. Material properties calculation. To calculate the properties of the whole
composite a campaign of numerical tests such as longitudinal, transversal, and
in-plane8 shear tensile tests have been conducted. For this purpose, the unit cell
(Fig. 1b) of the composite, assumed perfect without defects (voids) has been
used. For the unidirectional fiber reinforced epoxy, additional material parame-
ters are needed to describe the anisotropic response of the fibers. These are listed
in Table 2, assuming the fibers to be transverally isotropic. As the fibers are as-
sumed to stay elastic (fiber fracture is not considered), no anisotropic inelastic
material properties are considered. Figure 10 outlines the deformation resulting
from each loading at a maximum scale. Table 5 lists the calculated properties of
the overall composite9.

Fig. 10. Composite cell under (a) transverse loading, (b) longitudinal loading and
(c) in-plane shear loading.

Table 5. Calculated effective elastic and strength-related properties of the
CFRP composite.

Longitudinal Young’s modulus 143480 MPa
Transverse Young’s modulus 6687 MPa
Shear modulus 3640 MPa
Transverse strength 97.9 MPa
In-plane shear strength 52 MPa
Poisson’s ratio 0.28

8Since macroscopic realizations of the microstructure considered here are usually plies, the
term “in-plane" refers to the plane of a ply.

9The values of Young’s moduli in longitudinal and transverse direction in Table 5 related
to Fig. 10a and 10b, respectively, were obtained using boundary conditions in analogy to Sec-
tion 5.2. The boundary conditions for the shear test in Fig. 10c were such that the displacement
vectors on the top and bottom faces were fully prescribed and symmetry conditions were used
on the left and on the right faces.
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5.3.2. Fiber volume ratio effect. In this section, the micro-structure is random-
ized based on the fraction of fiber reinforcement. Typically, a higher fiber volume
fraction results in better mechanical properties of the composite. However, it has
been demonstrated that an increase in fiber content would not always, as one
would normally think, improve the energy-absorption capability of a CFRP ma-
terial [68]. The accuracy of this observation has been assessed in the case of
our material by the calculation of the energy absorbed up to the stress maxi-
mum level by the material subjected to transverse loading for two fiber volume
fractions (50% and 60%). The behavior of the material being subjected to longi-
tudinal, transverse, and plane shear loading is illustrated in Fig. 11. Within the
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Fig. 11. Fiber volume ratio effect on (a) longitudinal behaviour, (b) transverse behavior and
(c) in-plane shear behaviour.

simulated region, the results for 60% fiber volume fraction (FVF) in Fig. 11c are
similar to the strength reported in [69], where the shear properties of a composite

Table 6. Fiber volume fraction (FVF) effect on mechanical properties of the
CFRP composite, where ‘1’ denotes the direction of the fibers. The absorbed
energy is the total work generated on the composite minus the elastic energy.

FVF = 50% FVF = 60%
E11 [MPa] 126400 143480
E22 [MPa] 5920 6687
G12 [MPa] 2980 3630
σ22,max [MPa] 96.87 97.9√

2σ12,max [MPa] 68.43 73.58
ν12 0.257 0.246
Absorbed energy density 22 [MPa] 1.00 0.63
Absorbed energy density 12 [MPa] 0.75 0.64
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with 59% FVF were investigated. At first glance, one could assume that higher
fiber volume fractions generally lead to improved material properties. However,
it can be drawn from Table 6 that this is true only in terms of strength and stiff-
ness, whereas the variation of the fiber volume fraction showed an unexpected
effect on the capability of the material to absorb energy. Indeed, the calculation
revealed that a CFRP with only 50% of fibers absorbs more energy than the one
with 60%.

Therefore, we can confirm through our numerical study that an increase in
the fiber content does not necessarily improve the energy absorption capability
indicative of the composite material toughness. A possible explanation for this
finding is that as the fiber volume fraction increases, the volume of the matrix
between the fibers decreases. This further leads to a decrease in the transverse
strength of the composite which is a matrix dominated strength. As the trans-
verse strength decreases, matrix cracks form at lower strains, resulting in an early
failure and a reduction in the amount of the energy absorbed. This assertion
could be backed up by Fig. 12 which shows the damage distribution throughout
the unit cell at an early level of transverse loading for both volume fractions of
fibers 50% (diameter of fibers = 6.5µm) and 60% (diameter of fibers = 7µm).
Indeed, from this figure, one could easily notice that at the same level of loading
(low) the material with a fiber volume fraction of 60% exhibits a higher intensity
of damage in the matrix. This high intensity of damage reflects the early creation
of matrix cracks being at the origin of the low toughness (or also called energy
absorption capability) found for this material combination.

(a) (b)

Fig. 12. Fiber fraction effect: damage distribution in the composite cell under low traverse
loading for (a) FVF = 50% and (b) FVF = 60%.

5.3.3. Fiber shape effect. In addition to typical fibers with circular cross sections,
another type of fibers with non-circular cross sections (or also called elliptical
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Fig. 13. Cell of the composite reinforced by 60% of elliptical fibers.

fibers) has been considered. The unit cell of such combination is shown in Fig. 13.
Here, voids are not modeled and the typical fraction of fibers of 60% is considered.

A comparison between the responses obtained for the application of longitu-
dinal, transverse and in plane shear loadings to two different unit cells of com-
posites reinforced by 60% of elliptical and circular fibers has been performed.
This comparison is illustrated in Fig. 14.
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Fig. 14. Fiber shape effect on (a) longitudinal behavior, (b) traverse behavior and
(c) in-plane shear behavior.

The figure shows that the alteration from circular to elliptical fibers has
a mild enhancement effect on the longitudinal and the transverse behavior of
the overall material. However, a significant enhancement in terms of in-plane
shear properties could be granted to this alteration. The enhancement caused by
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the introduction of elliptical fibers instead of circular fibers does not cover only
the stiffness and the strength but also the energy absorption capability. Indeed
the energy absorbed by the material up to the maximum transverse strength
is enhanced by 61% in the case of in plane shear loading. This result could be
supported by the study [70], where it was found out that elliptical cross-sections
of the carbon fibers have a lower tendency to form transverse cracks compared to
circular cross-section carbon fibers. Table 7 collects the values of all parameters
calculated through this investigation.

Table 7. Fiber shape effect on mechanical properties of the CFRP composite,
where ‘1’ denotes the direction of the fibers.

Elliptical fibers Circular fibers
E11 [MPa] 145400 143480
E22 [MPa] 7300 6687
G12 [MPa] 4049 3630
σ22,max [MPa] 100.4 97.9√

2σ12,max [MPa] 87 73.58
ν12 0.2544 0.246
Absorbed energy density 22 [MPa] 0.7 0.63
Absorbed energy density 12 [MPa] 1.03 0.64

5.3.4. Matrix voids effect. Most studies in the literature correlate the degrada-
tion of mechanical properties with the void content increase and do not take
into account other void parameters such as size, shape, and spatial distribution.
The review [71] lists all these studies and also other studies that emphasized
the relevant effect of parameters other than the voids amount on the mechanical
performance of the fiber-reinforced composites. In this section, results obtained
through the investigation of the voids’ effect on the transverse behavior of the
carbon fiber-reinforced epoxy is presented and analyzed. The fiber fraction con-
sidered in this part of our study is also 60%, however in order to simplify the
problem and to save time, the unit cell considered here is not a cube but a plate
with a thin thickness. Indeed, the incorporation of the voids implies more re-
finement and then longer time of simulation. The voids modeled in this study
represent matrix defects whose considerable effect can only be noticed in the
transverse behavior. Therefore only a transverse tensile test has been simulated
to carry out this investigation. Prior to the variation of the voids’ parameters
and the assessment of the effect of this variation on the material properties, we
illustrate through Fig. 15 a general overview of the effect of such defects on the
failure behavior of the material. It could be easily noticed that the presence of
the voids even with a small fraction (0.2%) could affect the cracks formation and
distribution throughout the material.
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(a) (b)

Fig. 15. Damage distribution at the same loading level in the CFRP (a) without voids and
(b) with voids.

Porosity effect. To investigate the effect of the porosity10 amount, 5 volume
fractions have been considered in addition: 2%, 4%, 8%, 10% and 14%. Results
obtained from this investigation are presented in Fig. 16.

As expected, the incorporation of the voids in the CFRP material caused
a dramatic decline in the transverse strength and stiffness. For instance, 4% of
the increase in the voids content caused a reduction of 25% for σ22 and 18%
for E22. However, what was not expected is the result shown in Fig. 16c. In-
deed, the energy absorption capability of the material is improved up to 8%
of voids content. This same observation has been made in several experimental
studies [71]. And the physical explanation suggested for this unexpected finding
is that around these voids new plastic zones are formed allowing for an extra
energy-absorption. Though, it should be noted that this enhancement is granted
to a specific reduced fraction of porosity which is estimated according to our
investigation to be 8%. Based on these findings, a matrix porosity of up to 8%
in the carbon fibers reinforced epoxies leads to an enhancement in the energy
absorption capability, but implies a decrease in transverse stiffness and strength.

Voids distribution effect. To investigate the effect of the distribution of the
voids on the transverse behavior of the material, 2% of void volume fraction has

10Here, the porosity describes the volume ratio (in %) of pores in the material, usually
representing manufacturing defects.
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Fig. 16. Effect of particle volume fraction on the (a) stress-strain responses under uniaxial
loading, (b) maximum strength, (c) amount of dissipated energy due to plastic deformation

and (d) stiffness.

been considered. This amount of porosity has been represented by 4 voids of
a diameter equal to 1.5µm. Figure 17 shows two kinds of pores arrangement. In
the first one, the 2% of porosity is concentrated and in the other one, it is well
distributed. This investigation shows that the accumulation of voids results in
a slight gain in terms of transverse stiffness and transverse strength (respectively
+3.6% and +1.3%) against a significant loss in terms of deformation and energy
absorption capability (respectively −21% and −66%). Corresponding calculated
values are shown in Table 8.
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Fig. 17. Voids distribution effect on the transverse behavior of the CFRP material.

Table 8. Effect on the arrangement of the defects on transverse properties of the
CFRP composite.

Distributed Accumulated
Porosity [%] 2 2
Diameter [µm] 1 1
E22 [MPa] 5812 6041
σ22,max [MPa] 77.1 78.1
Absorbed energy 22 [MPa · µm3] 26.97 9.18

6. Conclusions

Microscopic failure mechanisms were investigated by finite element simula-
tions using a combination of geometrically nonlinear isotropic elastoplasticity
and an isotropic damage model with gradient-extension. Simulations made use
of a variational constitutive update algorithm based on the exponential map and
an adaptive meshing algorithm for a refined numerical resolution of the cracked
regions.

Three composite microstructures were simulated and numerically character-
ized: core-shell rubber particles reinforced-epoxy, woven glass fiber-reinforced
epoxy, and carbon fiber-reinforced epoxy. The study consisted in the investiga-



530 H. Boussetta, J. Dittmann, S. Wulfinghoff

tion of the effect of the microstructural parameters variation on the behavior
of the model. For the woven roving-reinforced composite, it was demonstrated
that reduced thicknesses of the rovings were beneficial for the resistance against
crack initiation. Reducing the width, however, increases the load carrying capa-
bility in terms of tensile strains but has the opposite effect in terms of tensile
stresses.

For the core-shell rubber particles reinforced composite, the influence of par-
ticle volume fraction, particle size, and matrix material properties on the overall
material properties was tested on a 3-dimensional cubic model representing a unit
cell of the matrix including spherical voids representative of cavitated reinforc-
ing particles. Here, stiffness and strength of the composite were decreased with
increasing the volume fraction of the particles, while the amount of dissipated
energy tended to increase. The matrix properties, such as the energy release
rate and the yield stress, have been also considered amongst the microstruc-
tural parameters whose variation could enhance or impair the performance of
the core-shell-rubber particles modified epoxy. It has been found that the energy
release rate initially has no effect on the properties of the material while the in-
crease of the yield stress leads to an increase of the material strength and energy
absorption capability.

The investigation of the microstructural variability effect on the behavior
of carbon fiber-reinforced epoxy included the consideration of several parame-
ters relating to both components, fibers and matrix. Indeed, two cross-section
shapes (circular and elliptical) have been considered in the unit cell specific to
this composite and two volume fractions of fibers (50% and 60%) have been
tested. Matrix defects being a decisive factor in the assessment of the behavior
of the composite, have been carefully studied. These defects were depicted by
spherical voids with different volume fractions, different diameters and different
arrangements.

The first key finding from this investigation is that fibers with elliptical cross
section are better reinforcing agents than fibers whose cross section shape is cir-
cular. A further interesting finding is that CFRP with 50% of fibers has a better
energy absorption capability than CFRP with 60%. However a decrease in the
fibers amount would lead to a decrease in the stiffness and the strength of the
overall composite.

Results obtained from the simulation of the tensile response of the compos-
ite unit cell including voids have been unexpected. Indeed, it has been found
that voids up to a specific volume fraction could improve the energy absorption
capability, while the strength and stiffness decrease. Results obtained from mul-
tivariate analyses relating to both materials (carbon fiber-reinforced epoxy and
core-shell rubber particles reinforced epoxy) have been gathered respectively in
Appendix A and Tables 9–12.
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Appendix A. Summary of major results

In Table 9, the effects of different microstructural parameter modifications
on the investigated overall properties of the core-shell rubber particles modified

Table 9. Microstructural variability effect on the properties of the core-shell
rubber particle modified epoxy , particle volume fraction (p.v.f.) in %.

Parameter Variation Effect on:
Young’s modulus tensile strength absorbed energy

p.f.v., radius 3.5% 50 nm −6.4% −5.36% +95.2%
7.5% 50 nm −13.1% −10.6% +109.8%
11.2% 50 nm −18.45% −14.8% +244%
3.6% 25 nm −6.9% −5.23% +95.2%
8% 25 nm −13.9% −10.6% +171.5%

11.2% 25 nm −18.5% −14.7% +156.8%
Yield stress of matrix 100 MPa 0% +24.4% +5.4%
r = 25 nm, p.f.v: 8% 120 MPa 0% +48.6% +2.7%
Energy release rate 70 J/m2 0% 0% 0%
of the matrix 90 J/m2 0% 0% 0%
r = 25 nm, p.f.v: 8%

Table 10. Material properties of the unmodified epoxy matrix of the core-shell
rubber reinforced composite.

Young’s modulus Initial yield stress Elastic energy release rate Absorbed energy
E [MPa] σy0 [MPa] ge

c [J/m2] [MPa·µm3]
2970 80.2 50 0.1363

Table 11. Micro-structural variability effect on the properties of the carbon
fiber-reinforced epoxy.

Parameter Variation Absorbed energy
E11 E22 G12 σ22

√
2σ12 Trans. In-plane

Shape of fibers Elliptic +1.3% +9% +11.5% +2.5% +18% +11% +61%
Fiber volume
fraction

50 % +11.9% −11.5% −17.9% −1% −7% +58.7% +17.2%

Porosity 2% −6.7% −11.3% +35%
4% −15.6% −23.6% +28.7%
8% −22.5% −32.4% +21.9%
10% −26.2% −37.7% +47.6%
14% −36.3% −40.8% +52.5%

Voids diameter 1µm −6.7% −11.3% +35%
1.5µm −7.3% −13.3% +16.5%

Voids distribution distributed −6.7% −11.3% +35%
accumulated −3% −10.1% −54.1%



532 H. Boussetta, J. Dittmann, S. Wulfinghoff

epoxy are summarized. Values representing the reference of comparison corre-
spond to the properties of the CSR/epoxy material without voids (porosity =
0%) subjected to the same loading conditions. These values are presented in
Table 10.

Table 11 is the analogon of Table 9 for the carbon fiber reinforced epoxy.
Values representing the reference of comparison correspond to the properties of
the CFRP material without voids (porosity=0%) subjected to the same loading
conditions. These values are presented in Table 12.

Table 12. Material properties of the typical carbon fiber-reinforced composite
without defects.

Cross section shape of fibers circular
Volume fractions of fibers 60%
Longitudinal Young’s modulus 143480 MPa
Transverse Young’s modulus 6687 MPa
Shear modulus 3640 MPa
Transverse strength 97.9 MPa
Absorbed energy under transverse loading 0.63 Jµm

Absorbed energy under in-plane loading 0.64 Jµm

Appendix B. Proof of coaxiality of bp and Re>beRe

The spectral decomposition of the inverse of cp and the related incompress-
ibility constraint (see Eqs. (2.12)) read

(B.1) cp−1 =

3∑
i=1

cp−1
i Ni ⊗Ni, cp−1

1 cp−1
2 cp−1

3 = 1.

The variation of the potential π∆ with respect to cp−1 is given by

(B.2) δπ∆ = g(D)
∂ψe

∂be
: (Fetrδcp−1Fetr>),

where we assume that exclusively the triad {N1,N2,N3} is varied, since we seek
its optimal orientation such that δπ∆ = 0. This condition implies that cp−1 is
coaxial with

(B.3) 2Fetr>∂ψe

∂be
Fetr = 2fp>Re>

(
be∂ψe

∂be

)
Refp = uprp>Re>τRerpup,

where τ is coaxial with be. Based on this result, it is trivial to show that bp and
Re>beRe are coaxial using Eq. (2.12).
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Appendix C. Algorithmic tangent operators

Due to the potential structure, the algorithmic tangent operators are com-
pletely symmetric and involve the linearization of the following terms of the weak
form (Eqs. (2.17) and (2.18))

(C.1) τ : dδ,
∂π∆

∂D
δD,

∂π∆

∂Grad(D)
·Grad(δD).

Since the linearization of the latter two terms and the computation of ∂τ/∂D
is rather trivial, we restrict ourselves to the linearization of the more complex
first expression, which (for fixed D) can be rearranged to yield the well-known
relation

(C.2) ∆(τ : dδ) = tr(l∆τ l>δ ) + dδ : ca : d∆

with l∆ = (∂∆x/∂X)F−1 and d∆ = Fl∆ and

(C.3) ca : d∆ = Fetr

(
∂S

∂Cetr : ∆Cetr

)
Fetr>,

where ∆Cetr = 2Fetr>d∆Fetr and the second Piola-Kirchhoff stress S
= FetrτFetr> with respect to the trial intermediate configuration is tacitly un-
derstood as a function of Cetr and D. For the derivation, we follow lines analo-
gous to Simo [8], who discusses in detail how the algorithmic tangent related to
a broad class of geometrically nonlinear time-discrete models can be expressed in
terms of the related tangent of the small strain counterparts. We start by noting
that in the plastic case, the yield criterion (see Eq. (2.28)) remains zero, if the
input parameters ε and D are perturbed:

(C.4) −∆f =
∂2π∆

∂∆γ∂ε
: ∆ε+

∂2π

∂∆γ∂D
∆D +

∂2π

(∂∆γ)2
∆γ = 0.

For the small-strain counterpart of the geometrically nonlinear model, the lin-
earization of the stress reads

(C.5) ∆τ =
∂τ

∂ε
: ∆ε+

∂τ

∂D
∆D.

The algorithmic tangent operator c̃a = ∂τ/∂ε can be derived from a straight-
forward linearization of Eq. (2.9) using Eq. (C.4):

(C.6) c̃a =
(
g(D)H(tr(ε)) +H(−tr(ε))

)
λI⊗ I

+ 2µg(D)

(
Is − ∆γ

‖ε′‖
(P′ − n⊗ n) +

(
∂2π∆

(∂∆γ)2

)−1

n⊗ ∂2π∆

∂∆γ∂ε

)
,
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where P′ is the deviatoric projector and H(•) is the Heaviside step function.
Introducing the eigenvalues and eigenvectors Si and Ni of S and λi and ni as
the eigenvalues and eigenvectors of betr, one can write (with FetrNi = λini)

τ = FetrSFetr> =

3∑
i=1

λ
2
iSini ⊗ ni,(C.7)

ni ⊗ ni =
(betr − λ2

jI)(betr − λ2
kI)

(λ
2
i − λ

2
j )(λ

2
i − λ

2
k)

.(C.8)

Further, we find that

(C.9) Fetr∆SFetr>

=
3∑
i=1

(
∆SiF

etr(Ni ⊗Ni)F
etr> + SiF

etr∆(Ni ⊗Ni)F
etr>

)
.

The linearization of Ni and S is given by:

∆Ni = Ω∆Ni =

3∑
j=1

Ω∆jiNj ,(C.10)

∆S =
3∑
i=1

∆SiNi ⊗Ni + Si(∆Ni ⊗Ni + Ni ⊗∆Ni),(C.11)

where it is exploited that ∆Ni ·Ni = 0, such that the incremental rotation of
the orthonormal eigenvectors can be expressed in terms of a skew-symmetric
spin-like tensor Ω∆. With this one can derive (l 6= k, no summation)

Nk ·∆S Nl = ∆Nk ·NlSk + Nk ·∆NlSl(C.12)

= Ω∆lkSk + Ω∆klSl = Ω∆lk(Sk − Sl).

By noting that the same derivation could alternatively have been carried out
with Cetr (with eigenvalues λ2) instead of S and using

(C.13) d∆ = sym(∆FF−1), ∆Cetr = 2Fetr>d∆Fetr,

one can reformulate (C.12) as follows

Ω∆lk =
1

2(Sk − Sl)
(Nk ⊗Nl + Nl ⊗Nk) : ∆S(C.14)

=
1

2(λ
2
k − λ

2
l )

(Nk ⊗Nl + Nl ⊗Nk) : ∆Cetr

=
λkλl

λ
2
k − λ

2
l

(nk ⊗ nl + nl ⊗ nk) : d∆.
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With

(C.15) FetrSi(∆Ni ⊗Ni + Ni ⊗∆Ni)F
etr>

=

3∑
j=1
j 6=i

τi

λ
2
i

λjλi(nj ⊗ ni + ni ⊗ nj)⊗ (ni ⊗ nj + nj ⊗ ni) : d∆
λiλj

λ
2
i − λ

2
j

,

where the τi are the eigenvalues of τ , and

∆(λ
2
i ) = Ni ⊗Ni : ∆Cetr = 2λ

2
ini ⊗ ni : d∆(C.16)

∆

(
1

λ
2
i

)
= − 2

λ
4
i

λ
2
ini ⊗ ni : d∆(C.17)

one obtains

Fetr∆SFetr> =
3∑
i=1

∆

(
τi

λ
2
i

)
λ

2
ini ⊗ ni ⊗ ni ⊗ ni : d∆

(C.18)

+
3∑
j=1
j 6=i

τiλ
2
j

λ
2
i − λ

2
j

(ni ⊗ nj + nj ⊗ ni)⊗ (ni ⊗ nj + nj ⊗ ni) : d∆.

Using the eigensystem of τ , one can further show that ∆τi =
∑

j ∂τi/∂εjd∆j .
Thus, the algorithmic tangent ĉar expressed in the Mandel notation with respect
to the eigensystem of τ is given by

(C.19) ĉar =



c̃a
11 − 2τ1 c̃a

12 c̃a
13 0 0 0

c̃a
21 c̃a

22 − 2τ2 c̃a
23 0 0 0

c̃a
31 c̃a

32 c̃a
33 − 2τ3 0 0 0

0 0 0 ĉar
44 0 0

0 0 0 0 ĉar
55 0

0 0 0 0 0 ĉar
66


with

(C.20) ĉar
(3+i)(3+i) = 2

τp(i,1)λ
2
p(i,2) − τp(i,2)λ

2
p(i,1)

λ
2
p(i,1) − λ

2
p(i,2)

, p =

2 3
1 3
1 2

 .

Introducing the following notation

(C.21) ni = Qei =

3∑
j=1

Qjiei, Q =

3∑
i=1

ni ⊗ ei,
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the algorithmic tangent ca can be written as

ca = car
ijklni ⊗ nj ⊗ nk ⊗ nl

= QIi ⊗QJj ⊗QKk ⊗QLl car
ijkl ni ⊗ nj ⊗ nk ⊗ nl.

(C.22)

Finally, the algorithmic tangent in matrix notation ĉa reads

(C.23) ĉa = (Q
s
2Q>) ĉar (Q>

s
2Q),

where the symmetric box product (a 6× 6-matrix) is defined through

(A
s
2A>)C = A sym(C)A>.
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