Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
This study examines the application of ion current measurements to the identification of heat release parameters inside the combustion chamber of a homogeneous charge compression ignition (HCCI) engine fuelled with gasoline. HCCI combustion was achieved with the use of exhaust gas trapping. Combustion parameters derived from the in-cylinder pressure and ion current measurements were compared and analysed. Ion current measurements were accomplished using the existing spark plug and a dedicated electronic circuit. The experiments were performed at a variable excess air ratio and a variable amount of trapped residuals. The results showed a good correlation between peak values of the ion current and heat release rate, except for the cases where a fuel-rich mixture was burnt. The computed ion current integral over the volume of the combustion chamber showed a good agreement with the heat released in the combustion chamber, however this parameter was found to be affected by the amount of trapped residuals. Combustion timing characteristic values computed using heat release and ion current were found to be correlated, however the relationship was not linear.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
223--234
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- University of Windsor, Department of Mechanical, Automotive & Materials Engineering, 2285 Wyandotte St. W. Windsor, Ont. Canada
Bibliografia
- [1] Yao, M., Zheng, Z., Liu, H. (2009). Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Prog. in Energy Combust. Sci., 35, 398-437.
- [2] Canakci, M. (2012). Combustion characteristics of a DI-HCCI gasoline engine running at different boost pressures. Fuel, 96, 546-555.
- [3] Pyszczek, R., Mazuro, P., Teodorczyk, A. (2016). Numerical investigation of CAI Combustion in the Opposed-Piston Engine with Direct and Indirect Water Injection (2016). IOP Conference Series: Materials Science and Engineering, 148(1), 012083.
- [4] Lavy, J., Dabadie, J.Ch., Angelberger, Ch., Duret, P., et al. (2000). Innovative ultra-low NOX con-trolled auto-ignition combustion process for gasoline engines: the 4-SPACE project. SAE Technical Paper 2000-01-1837.
- [5] Zhao, H., Li, J., Ma, T., Ladommatos, N. (2002). Performance and analysis of a 4-stroke multi-cylinder gasoline engine with CAI combustion. SAE Technical Paper 2002-01-0420.
- [6] Yap, D., Karlovsky, J., Megaritis, A., Wyszynski, M.L., Xu, H. (2005). An investigation into propane homogeneous charge compression ignition (HCCI) engine operation with residual gas trapping. Fuel, 84, 2372-2379.
- [7] Dec, J.E., Yang, Y., Dronniou, N. (2011). Boosted HCCI - controlling pressure-rise rates for performance improvements using partial fuel stratification with conventional gasoline. SAE Int. J. Engines, 4, 1169-1189.
- [8] Zoldak, P., Sobiesiak, A., Bergin, M., Wickman, D.D. (2014). Computational study of reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine using natural gas. SAE Technical Paper 2014-01-1321.
- [9] Mikulski, M., Bekdemir, C. (2017). Understanding the role of low reactivity fuel stratification in a dual fuel RCCI engine - A simulation study. Appl. Energy, 191, 689-708.
- [10] Lee, M., Oh, S., Sunwoo, M. (2011). Combustion phase detection algorithm for four-cylinder controlled autoignition engines using in-cylinder pressure information. Int. J. Automot. Technol., 12(5), 645-652.
- [11] Saxena, S., Bedoya, I.D. (2013). Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits. Prog. Energy Combust. Sci., 39, 457-488.
- [12] Lee, K., Cho, S., Kim, N, Min, K. (2015). A study on combustion control and operating range expansion of gasoline HCCI. Energy, 91, 1038-1048.
- [13] Hunicz, J., Piernikarski, D. (2001). Investigation of combustion in a gasoline engine using spectrophotometric methods. Proc. SPIE Int. Soc. Opt. Eng., 4516, 307-314.
- [14] Asano, M., Kuma, T., Kajitani, M., Takeuchi, M. (1998). Development of New Ion Current Combustion Control System. SAE Technical Paper, 980162.
- [15] Filipek, P. (2013). Estimating air-fuel mixture composition in the fuel injection control process in an SI engine using ionization signal in the combustion chamber. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 15, 259-265.
- [16] Ogata, K. (2014). Investigation of Robustness Control for Practical Use of Gasoline HCCI Engine - An Investigation of a Detecting Technology of Conditions of HCCI Using an Ion Current Sensor. SAE Technical Paper, 2014-01-1279.
- [17] Strandh, P., Christensen, M., Bengtsson, J., Johansson, R. et al. (2003). Ion Current Sensing for HCCI Combustion Feedback. SAE Technical Paper, 2003-01-3216
- [18] Vressner, A., Hultqvist, A., Tunestal, P., Johansson, B. et al. (2005). Fuel Effects on Ion Current in an HCCI Engine. SAE Technical Paper, 2005-01-2093.
- [19] Dong, G., Li, L., Wu, Z., Zhang, Z., Zhao, D. (2013). Study of the phase-varying mechanisms of ion current signals for combustion phasing in a gasoline HCCI engine. Fuel, 113, 209-215.
- [20] Butt, R.H., Chen, Y., Mack, J.H., Saxena S., Dibble, R.W., Chen, J.Y. (2015). Improving ion current of sparkplug ion sensors in HCCI combustion using sodium, potassium, and cesium acetates: Experimental and numerical modelling. Proc. Combust. Inst., 35, 3107-3115.
- [21] Liu, Y., Li, L., Ye, J., Deng, J., Wu. Z. (2016). Ion current signal and characteristics of ethanol/gasoline dual fuel HCCI combustion. Fuel, 166, 42-50.
- [22] Hunicz, J. (2014). On cyclic variability in a residual effected HCCI engine with direct gasoline injection during negative valve overlap. Mathematical Problems in Engineering, 359230.
- [23] ASTM International standard (2013). Standard test method for detailed analysis of petroleum naphthas through n-Nonane by capillary gas chromatography. ASTM Standard D 5134.
- [24] Hunicz, J., Geca, M.S., Kordos P., Komsta H. (2015) An experimental study on a boosted gasoline HCCI engine under different direct fuel injection strategies. Exp. Therm. Fluid Sci., 62, 151-163.
- [25] Hunicz, J. (2016). An experimental study into the chemical effects of direct gasoline injection into retained residuals in a homogeneous charge compression ignition engine). Int. J. Engine Res., 17, 1031-1044.
- [26] Bogin, G., Chen, J.Y., Dibble, R.W. (2009). The effects of intake pressure, fuel concentration, and bias voltage on the detection of ions in a Homogeneous Charge Compression Ignition (HCCI) engine. Proc. Combust. Inst. , 32, 2877-2884.
- [27] Dong, G., Chen, Y., Li, L., Wu, Z., Dibble, R. (2017). A skeletal gasoline flame ionization mechanism for combustion timing prediction on HCCI engines. Proc. Combust. Inst., 36, 3669-3676.
Uwagi
EN
The research was funded by the National Science Centre, Poland under the grant No. 2015/17/B/ST8/03279.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c366a6e9-8dca-420f-b760-1c3d8b7c1fef