PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Current State, Challenges and Perspectives of Biological Production of Hydrogen in Dark Fermentation Process in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increasing demand for electrical energy and environmental concerns associated with conventional means of its generation drive the interest in alternative fuels. Biohydrogen, widely considered as fuel of the future, is one of such alternatives. To date, research results suggest that biological routes are the most promising for hydrogen production, especially dark (hydrogen) fermentation. Hydrogen fermentation can be performed with agricultural and food processing wastes as substrates. In this paper the most important factors influencing dark fermentation are reviewed and analyzed. These are: pH, partial pressure, temperature, and retention time. The biohydrogen generation efficiency is also presented with respect to different substrates. It should be also pointed out that many factors are still unknown; thus, the process requires conducting further research.
Rocznik
Strony
146--160
Opis fizyczny
Bibliogr. 108 poz., rys., tab.
Twórcy
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
  • Institute of Environmental Engineering, Czestochowa University of Technology, Brzeznicka 60A, 42-200 Czestochowa, Poland
autor
  • College of Engineering, China Agricultural University, No. 17 Qinghua Donglu, Haidian District, Beijing 100083, China
Bibliografia
  • 1. Act of 10 June 2016 amending the Renewable Energy Sources Act and certain other acts, http://dziennikustaw.gov.pl/du/2016/925/1; 2016 [accessed 06 March 2018].
  • 2. Adams M.W.W., Stiefel E.I., 1998. Biological hydrogen production: not so elementary. Science, 282, 1842–1843.
  • 3. Alves H.J., Bley Junior C., Niklevicz R.R., Frigo E.P., Frigo M.S., Coimbra-Araújo C.H., 2013. Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrogen Energy, 38,5215–5225.
  • 4. Angelidaki I., Ahring B., 1994. Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res, 28, 727–731.
  • 5. Balat M., 2008. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrogen Energy 33,4013–4029.
  • 6. Benito Martin P.C., Schlienz M., Greger M., 2017. Production of bio-hydrogen and methane during semi-continuous digestion of maize silage in a two-stage system, International Journal of Hydrogen Energy, 42, 5768–5779.
  • 7. Borenstein S., 2015. Is the Future of Electricity Generation really Distributed? Energy Inst. Haas. https://energyathaas.wordpress.com/2015/05/04/is-the-future-of-electricity-generation-really-distributed, [accessed 1 February 2018].
  • 8. Budzianowski WM., 2011. Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas? Energy, 36, 6318–6325.
  • 9. Calli B., Schoenmaekers K., Vanbroekhoven K., Diels L., 2008. Dark fermentative H2 production from xylose and lactose – Effects of on-line pH control. International Journal of Hydrogen Energy, 33, 522–530.
  • 10. Carvalho F., Prazeres A.R., Rivas J., 2013. Cheese whey wastewater: Characterization and treatment. Science of The Total Environment, 445–446, 385–396.
  • 11. Cerda A., Artola A., Font X., Barrena R., Gea T., Sánchez A., 2018. Composting of food wastes: Status and challenges. Bioresource Technology, 248, 57–67.
  • 12. Chou C., Wang C., Huang C., Lay J., 2008. Pilot study of the influence of stirring and pH on anaerobes converting high-solid organic wastes to hydrogen. Int J Hydrogen Energy, 33, 1550–1558.
  • 13. Chu C.F., Xu K.Q., Li Y.Y., Inamori Y., 2012. Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. International Journal of Hydrogen Energy, 37, 10611–10618.
  • 14. Chu C.Y., Wang Z.F., 2017. Dairy cow solid waste hydrolysis and hydrogen/methane productions by anaerobic digestion technology. International Journal of Hydrogen Energy, 42, 30591–30598.
  • 15. Collet C., Adler N., Schwitzguebel J.P., 2004. Hydrogen production by Clostridium thermacolactium during countinuous fermentation of lactose. Int. J. of Hydrogen Energy, 29, 1479–1485.
  • 16. Czekala W., 2018. Agricultural Biogas Plants as a Chance for the Development of the Agri-Food Sector. Journal of Ecological Engineering, 19, 2, 179–183.
  • 17. Dach J., Boniecki P., Przybył J., Janczak D., Lewicki A., Czekała W., Witaszek K., Rodriguez Carmona P.C., Cieślik M., 2014. Energetic efficiency analysis of the agricultural biogas plant in 250 kW(e) experimental installation. Energy, 69, 34–38.
  • 18. Dach J., Koszela K., Boniecki P., Zaborowicz M., Lewicki A., Czekała W., Skwarcz J., Wei Qiao, Piekarska-Boniecka H., Białobrzewski I., 2016. The use of neural modelling to estimate the methane production from slurry fermentation processes. Renewable and Sustainable Energy Reviews, 56, 603–610.
  • 19. Danko A.S., Pinheiro F., Abreu A.A., Alves M.M., 2008. Effect of methanogenic inhibitors, inocula type, and temperature on biohydrogen production from food components. Environ. Eng. Manage. J., 7, 531–536.
  • 20. Datar R., Huang J., Maness P.C., Mohagheghi A., Czernik S., Chornet E., 2007. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int J Hydrogen Energy, 32, 932–939.
  • 21. Daufin G., René F., Aimar P., 1998. Les separations par membrane dans les procédés de l’industrie alimentaire, Collection Sciences et Techniques Agroalimentaires, Paris, France.
  • 22. De Gioannis G., Muntoni A., Polettini A., Pomi R., Spiga D., 2017. Energy recovery from one- and two-stage anaerobic digestion of food waste. Waste Management, 68, 595–602.
  • 23. Dong L., Zhenhong Y., Yongming S., Xiaoying K., Yu Z., 2009. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixedculture fermentation. Int. J. Hydrogen Energy, 34, 812–820.
  • 24. Energy Regulatory Office, 2017. The power of RES installations in Poland in 30 September 2017, https://www.ure.gov.pl/pl/rynki-energii/energia-elektryczna/odnawialne-zrodla-ener/potencjal-krajowy-oze/5753,Moc-zainstalowana-MW.html; 2017 [accessed 06 March 2018].
  • 25. European Commision (DG ENV), Directorate C – Industry 2010. 2010. Preparatory study on food waste across EU 27, https://ec.europa.eu/food/safety/food_waste/library_en; [accessed 06 March 2018].
  • 26. Eurostat Statistics Explained, 2017. Energy from renewable sources, http://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_from_renewable_sources; [accessed 05 March 2018].
  • 27. Fan Y., Zhang Y., Zhang S., Hou H., Ren B., 2006. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol, 97, 500–505.
  • 28. Farina R., Boopathy R., Hartmann A., Tilche A., 1988. Ammonia stress during thermophilic digestion of raw laying hen wastes. In Proceedings of the Fifth International symposium on anaerobic digestion, 111–117.
  • 29. Ghimire A., Frunzo L., Pirozzi F., Trably E., Escudie R., Lens P.N.L., Esposito G., 2015. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 144:73–95.
  • 30. Ghosh D., Hallenbeck P.C., 2009. Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135. Int J Hydrogen Energy, 34, 7979–7982.
  • 31. González Siso M.I., 1996. The biotechnological utilization of cheese whey: A review. Bioresour. Technol., 57(1), 1–11.
  • 32. Griffin B., Buisson P., Criqui P., Mima S., 2013. White knights: will wind and solar come to the rescue of a looming capacity gap from nuclear phase-out or slow CCS start-up? Clim. Chang., 123, 623–635.
  • 33. Guo X.M., Trably E., Latrille E., Carrère H., Steyer J.P., 2010. Hydrogen production from agricultural waste by dark fermentation: A review. International Journal of Hydrogen Energy, 35, 10660–10673.
  • 34. Gustavsson J., Cederberg C., Sonesson U., van Otterdijk R., Meybeck A., 2011. Global Food Losses and Food Waste: Extent, Causes and Prevention. Rome: Food and, Agriculture Organisation of the United Nations.
  • 35. Hallenbeck P.C., 2001. Integration of hydrogen evolving systems with cellular metabolism: the molecular biology and biochemistry of electron transport factors and associated reductases. In: J. Miyake T, Matsunaga, A. San Pietro (Eds.), Biohydrogen II, Pergamon, Elsevier Sciences, Amsterdam; 171–184.
  • 36. Hansen K.H., Angelidaki I., Ahring B.R., 1998. Anaerobic digestion of swine manure: inhibition by ammonia. Water Research, 32, 5–12.
  • 37. Hassen Sellami M., Loudiyi K., 2017. Electrolytes behavior during hydrogen production by solar energy. Renewable and Sustainable Energy Reviews, 70:1331–1335.
  • 38. Hawkes F.R., Dinsdale R., Hawkes D.L., Hussy I., 2002. Sustainable fermentative hydrogen production: challenges for process optimization. Int. J. Hydrogen Energy, 27, 1339–1347.
  • 39. Hermann C., Idler C., Heiermann M., 2015. Improving aerobic stability and biogas production of maize silage using silage additives. Bioresource Technology, 197, 393–403.
  • 40. Hobson P.N., Bousfield S., Summers R., Kirsch E.J., 1974. Anaerobic digestion of organic matter. Crit Rev Environ Sci Technol, 4, 131–191.
  • 41. Hong C., Haiyun W., 2010. Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology. Bioresource Technol., 101, 5487–5493.
  • 42. Ivanova G., Rákhely G., Kovács K.L., 2009. Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrogen Energy, 34, 3659–3670.
  • 43. Jackson D.D., Ellms J.W., 1896. On odors and tastes of surface waters with special reference to Anabaena, a microscopial organism found in certain water supplies of Massachusetts. Rep Mass State Board Health, 410–20.
  • 44. Karlsson A., Vallin L., Ejlertsson J., 2008. Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. Int J Hydrogen Energy, 33, 953–962.
  • 45. Kazimierowicz J., 2014. Organic waste used in agricultural biogas plants. Journal of Ecological Engineering, 15, 2, 88–92.
  • 46. Keasling J.D., Benemann J.R., Pramanik J., Carrier T.A., Jones K.L., Van Dien S.J., 1998. A toolkit for metabolic engineering of bacteria: application to hydrogen production. In: O. Zaborsky (Ed.), Biohydrogen, Plenum Press, New York, 87–98.
  • 47. Khanal S.K., Chen W.H., Li L., Sung S., 2004. Biological hydrogen production: effect of pH and intermediate products. Int. J. Hydrogen Energ, 29, 1123–1131.
  • 48. Kim J.K., Nhat L., Chun Y.N., Kim S.W., 2008. Hydrogen production conditions from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785. Biotechnol. Bioprocess, 13, 499–504.
  • 49. Kim S.H., Han S.K., Shin H.S., 2004. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrogen Energy, 29, 1607–1616.
  • 50. Kotay S.M., Das D., 2008. Biohydrogen as a renewable energy resource – prospects and potentials. Int J Hydrogen Energy, 33,258–263.
  • 51. Kotsopoulos T.A., 2009. Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 °C). Biomass Bioenergy, 33, 1168–1174.
  • 52. Kozłowski K., Lewicki A., Sołowiej P., Neugebauer M., Smurzyńska A., 2016. Usage of waste whey as mono-substrate in continuous fermentation process. Energy And Clean Technologies Conference Proceedings, SGEM 2016, Vol. III: 345–350.
  • 53. Kraemer J.T., Bagley D.M., 2007. Improving the yield from fermentative hydrogen production. Biotechnol. Lett., 29, 685–695.
  • 54. Kumar N., Das D., 2000. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem., 35, 589–593.
  • 55. Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL), Faustzahlen Biogas, 2nd edition, Darmstadt; 2009
  • 56. Lay J., Fan K., Hwang J., Chang J., Hsu P., 2005. Factors affecting hydrogen production from food wastes by Clostridium-rich composts. J Environ Eng, 131, 595–602.
  • 57. Lay J.J., Lee Y.J., Noike T., 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res., 33, 2579–2586.
  • 58. Lee Y.W., Chung J., 2010. Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation. Int. J. Hydrogen Energy, 35, 11746–11755.
  • 59. Levin D.B., Pitt L., Love M., 2004. Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy, 29, 173–185.
  • 60. Li D., Chen H., 2007. Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. Int J Hydrogen Energy, 32, 1742–1748.
  • 61. Li M., Zhao Y., Guo Q., Qian X., Niu D., 2008. Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill. Renew Energy, 33, 2573–2579.
  • 62. Liang T., Cheng S., Wu K., 2002. Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane. Int J Hydrogen Energy, 27, 1157–1165.
  • 63. Mao C., Feng Y., Wang X., Ren G., 2015. Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555.
  • 64. Marszałek M., Kowalski Z., Makara A., 2014. Physicochemical and microbiological characteristics of pig slurry. Technical Transactions. Chemistry, 1, 81–91.
  • 65. Mata-Alvarez J., Macé S., Llabrés P., 2000 Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol., 74, 3–16.
  • 66. Mizuno O., Dinsdale R., Hawkes F.R., Hawkes D.L., Noike T., 2000. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresource Technology, 73, 59–65, 2000.
  • 67. Monlau F., Barakat A., Trably E., Dumas C., Steyer J.P., Carrère H., 2013. Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit Rev Environ Sci Technol, 43, 260–322.
  • 68. Multerer A., 2014. The impact of biogas raw materials on the utilized agricultural area – an assessment of alternative raw material. Anliegen Nat., 36, 54–60.
  • 69. Murphy J.D., Rudolf B., Weiland P., Wellinger A., 2011. Biogas from Crop Digestion. IEA Bioenergy – Task 37: Energy from Biogas. http://task37.ieabioenergy.com/files/daten-redaktion/download/publi-task37/Update_Energy_crop_2011.pdf; [accessed 03 March 2018].
  • 70. Naik S.N., Goud V.V., Rout P., Dalai A.K., 2010. Production of first and second generation biofuels: a comprehensive review. Renew. Sustain. Energy Rev., 14, 578–597.
  • 71. Nath K., Das D., 2003. Hydrogen from biomass. Current Science, 85, 265–271.
  • 72. National Center for Agricultural Support, 2018. Register of agricultural biogas producers – 02 March 2018, http://www.kowr.gov.pl/uploads/pliki/oze/biogaz/Rejestr_wytworcow_biogazu_rolniczego.pdf; [accessed 06 March 2018].
  • 73. National Center for Agricultural Support, Substrates for biogas plants 2011–2016, 2017. http://bip.kowr.gov.pl/informacje-publiczne/odnawialne-zrodla-energii/biogaz-rolniczy/dane-dotyczace-dzialalnosci-wytworcow-biogazu-rolniczego-w-latach-2011–2016; [accessed 06 March 2018].
  • 74. Nazlina H.M.Y.N.H., Nor’Aini A.R., Man H.C., Yusoff M.Z.M., Hassan M.A., 2011. Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values. Int. J. Hydrogen Energy, 36, 9571–9580.
  • 75. Neshat S.A., Mohammadi M., Najafpour G.D., Lahijani P., 2017. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renewable and Sustainable Energy Reviews, 79, 308–322.
  • 76. Ni M., Leung D.Y.C., Leung M.K.H., Sumathy K., 2006. An overview of hydrogen production from biomass. Fuel Process Technol. 87, 461–472.
  • 77. Nielsen A.T., Amandusson H., Bjorklund R., Dannetun H., Ejlertsson J., Ekedahl L.G., 2001. Hydrogen production from organic waste. Int J Hydrogen Energy, 26, 547–550.
  • 78. Oh Y.K., Kim S.H., Kim M.S., Park S., 2004. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol. Bioeng., 88, 690–698.
  • 79. Panesar P.S., Kennedy J.F., Gandhi D.N., Bunko K., 2007. Bioutilisation of whey for lactic acid production. Food Chem, 105, 1–14.
  • 80. Paska J., Surma T., 2014. Electricity generation from renewable energy sources in Poland. Renewable Energy, 71:286–294.
  • 81. Piwowar A., Dzikuć M., Adamczyk J., 2016. Agricultural biogas plants in Poland – selected technological, market and environmental aspects. Renewable and Sustainable Energy Reviews, 58, 69–74.
  • 82. Polish Power Exchange, 2018. Monthly market reports 2012–2018, https://tge.pl/en/155/raporty-miesieczne; [accessed 05 March 2018].
  • 83. Rahman S.N.A., Masdar M.S., Rosli M.I., Majlan E.H., Husaini T., Kamarudin S.K., Daud W.R.W., 2016. Overview biohydrogen technologies and application in fuel cell technology. Renewable and Sustainable Energy Reviews, 66,137–162.
  • 84. Saxena R.C., Adhikari D.K., 2009. Goyal HB, Biomass-based energy fuel through biochemical routes: a review. Renew. Sustain. Energy Rev., 13, 167–178.
  • 85. Schröder C., Selig M., Schönheit P., 1994. Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyper-thermophilic eubacterium Thermotogamaritima – Involvement of the Embden–Meyerhof pathway. Arch. Microbiol., 161, 460–470.
  • 86. Shin H., Youn J., 2005. Conversion of food waste into hydrogen by thermophilic acidogenesis. Biodegradation, 16, 33–44.
  • 87. Strickland L.H., 1929. The bacterial decomposition of formate. Biochem J, 23:1187
  • 88. Tang G., Huang J., Sun Z., Tang Q., Yan C., Liu G., 2008. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng, 106, 80–87.
  • 89. Teplyakov V.V., Gassanova L.G., Sostina E.G., Slepova E.V., Modigell M., Netrusov A.I., 2002. Labscale bioreactor integrated with active membrane system for hydrogen production: experience and prospects. Int J Hydrogen Energy, 27, 1149–1155.
  • 90. Thi N., Kumar G., Lin C., 2015. An overview of food waste management in developing countries: current status and future perspective, J. Environ. Manage., 157, 220–229.
  • 91. Valdez-Vazquez I., Rios-Leal E., Esparza-García F., Cecchi F., Poggi-Varaldo H., 2005. Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime. Int. J. Hydrogen Energy, 30, 1383–1391.
  • 92. Van Niel E.W.J., Budde M.A.W., de Haas G.G., van der Wal F.J., Claasen P.A.M., Stams A.J.M., 2002. Distinctive properties of high hydrogen producing extreme thermophiles. Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int. J. Hydrogen Energy, 27, 1391–1398.
  • 93. Van Velsen A.F.M., 1979. Adaption of methanogenic sludge to high ammonia-nitrogen concentrations. Wat. Res., 13, 995–999.
  • 94. Venetsaneas N., Antonopoulou G., Stamatelatou K., Kornaros M., Lyberatos G., 2009. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour Technol, 100, 3713–3717.
  • 95. Wang X., Zhao Y., 2009. A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int. J. Hydrogen Energy, 34, 245–254.
  • 96. Ward A.J., Hobbs P.J., Holliman P.J., Jones D.L., 2008. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol., 99, 7928–7940.
  • 97. Wędzik A., Siewierski T., Szypowski M., 2017. Green certificates market in Poland – The sources of crisis. Renewable and Sustainable Energy Reviews, 75:490–503.
  • 98. White E.M., Latta G., Alig R.J., Skog K.E., Adams D.M., 2013. Biomass production from the U.S. forest and agriculture sectors in support of a renewable electricity standard. Energy Policy, 58, 6474.
  • 99. Wiater J., Horysz M., 2017. Organic waste as a substrate in biogas production. Journal of Ecological Engineering, 18, 5, 226–234.
  • 100. Wichern M., Lübken M., Horn H., 2008. Optimizing sequencing batch reactor (SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge. Water Sci. Technol 58, 1199–1206.
  • 101. Wu X., Zhu J., Miller C., 2008. Dairy Milking Wastewater Treatment Using a Lab-Scale Sequencing Batch Reactor (SBR). Transactions of the ASABE, 51, 1057–1065.
  • 102. Xing Y., Li Z., Fan Y.T., Hou H.W., 2010. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environ Sci Pollut Res, 17, 392–399.
  • 103. Yasin N.H.M., Mumtaz T., Hassan M.A., Abd Rahman N., 2013. Food waste and food processing waste for biohydrogen production: A review. Journal of Environmental Management, 130, 375–385.
  • 104. Yokoyama H., Waki M., Moriya N., Yasuda T., Tanaka Y., Haga K., 2007. Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol, 74, 474–483.
  • 105. Yun Y.M., Lee M.K., Im S.W., Marone A., Trably E., Shin S.R., Kim M.G., Cho S.K., Kim D.H., 2018. Biohydrogen production from food waste: Current status, limitations, and future perspectives. Bioresource Technology, 248, 79–87.
  • 106. Zhang M.L., Fan Y., Xing Y., Pan C., Zhang G., Lay J., 2007. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Int J Hydrogen Energy, 31, 250–254.
  • 107. Zhu J., Miller C., Li Y.C., Wu X., 2009. Swine manure fermentation to produce biohydrogen. Bioresour Technol, 100, 5472–5477.
  • 108. Zong W., Yu R., Zhang P., Fan M., Zhou Z., 2009. Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenergy, 33, 1458–1463.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3641ee7-8b31-4ddd-8144-5e173f3381bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.