Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
This article presents results of studies on multicriteria optimisation in the decopperisation process of flash smelting slags coming from the process of decopperisation at the "Głogów II" Copper Smelter. Measurements of viscosity were conducted using a high-temperature viscometer manufactured by Brookfield company. An addition in the form of calcium fluoride has an advantageous influence on decreasing the liquidus temperature of slag, and the effect of decreasing viscosity at the participation of calcium fluoride is significant. A motivation to conduct studies on viscosity of decopperised slags is an optimisation of the process of decopperisation at an improvement of this process parameters, i.e. the time of melt per one production cycle and consumption of electric power in the whole process. The efficiency of optimisation of the process course depends not only on an accepted criterion of the quality of controlling, a type of technological parameters, but also, to large extent, on characteristics and features of these parameters. CaCO3 currently added to the process of decopperisation efficiently decreases viscosity of flash slag, at the same time has influence on an increase of the yield of copper in alloy, but on the other hand, it increases the mass of slag, artificially under representing concentration of this metal. The article is completed with a conclusion of discussed issues, stating that a search for a new technological addition is still necessary.
Czasopismo
Rocznik
Tom
Strony
131--136
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
autor
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. Mickiewicza 30, 30–059 Kraków, Poland
Bibliografia
- [1] Bratek, S., Czernecki, J., Norwisz, J. et al. (1985). Viscosity of slag suspension. Rudy i Metale Nieżelazne. 30(3), 298-303. (in Polish).
- [2] Zajączkowski, A., Czernecki, J. & Botor, J. (1997). Viscosity testing of metallurgical slags. Rudy i Metale Nieżelazne. 42(1), 12-18. (in Polish).
- [3] Kucharski, M., Stubina, N.A. & Toguri, J.M. (1989). Viscosity measurements of molten Fe-O-SiO2, Fe-O-CaO-SiO2 and Fe-O-MgO-SiO2 slags. Canadian Metallurgical Quarterly. 28(1), 7-11.
- [4] Zhang, F. Yang, C. (2016) China’s Copper Market Analysis and Outlook, Bejing Antaike Information Development, Lisbon 9 march, 7-10.
- [5] Wędrychowicz, M., Kucharski, M. (2013). Change in the viscosity of slag slag in the copper recovery process. Recycling of non-ferrous metals – 42. International conference, Kraków 6–8.02.2013. (in Polish).
- [6] Czernecki, J., Warmuz, M., Wojciechowski, R. (1996). Monografia KGHM Polska Miedź S.A.. Część VI Hutnictwo. Lubin: Wyd. PROFIL.
- [7] Benesch, R., Janowski, J. & Delekta, J. (1964). Determination of optimal conditions for measuring the viscosity of metallurgical slags. Archiwum Hutnictwa. IX(1), 103-107. (in Polish).
- [8] Machin, J.S. & Hanna, D.L. (1945). Viscosity studies of system CaO-MgO-Al2O3: 1, 40% SiO2. Journal of the American Society. November 28(11), 310-316.
- [9] Machin, J.S. & Yee, T.B. (1948). Viscosity studies of system CaO-MgO-Al2O3-SiO2: II, CaO-Al2O3-SiO2. Journal of the American Society. July, 31(7), 200-204.
- [10] Zajączkowski, A., Bratek, S., Bratek, Ł. et al. (2010). The effect of the replacement of the addition of limestone with substances containing calcium sulphates to the process of switching off slag suspension. Rudy i Metale Nieżelazne. 55(8), 539-546. (in Polish).
- [11] Bydałek, A.W. & Holtzer, M. (2015). Selected Aspects of the Assessment of the Quality of Slag. Archives of Foundry Engineering. 15(1), 9-12. DOI:10.2478/afe.
- [12] Karwan, T., Konefał, R., Nowakowski, J. (2014). Structure of slags from the slurry process. International conference: Non-ferrous metal metallurgy. Kraków 17-19.11.2014, (pp. 1-12). (in Polish).
- [13] Holewiński, S. (1960). Basic mineral components of blast furnace slags. Kraków: Zeszyty naukowe AGH nr 26. (in Polish).
- [14] Biernat, S. & Bydałek, A.W. (2014). The application of Numerical Methods to evaluate the viscosity of the coating using the model extraction Iida. Archives of Foundry Engineering. 14(3), 85-89. DOI:10.2478/afe.
- [15] Chen, L., Zheng Yong, S. & Ghoniem, A.F. (2013). Modeling the slag behavior in three dimensional CFD simulation of avertically-oriented oxy-coal combustor. Fuel Processing Technology. 112, 106-117. ISSN 02139-4307.
- [16] Durinck, D., Jones, P.T., Blanpain, B., Wollants, P., Mertens, G. & J. Elsen, J. (2007). Slag Solidification Modeling Using the Scheil–Gulliver Assumptions. Journal American Ceramic Society, 90(4), 1177-1185. DOI.org/10.1111/j.1551-2916.2007.01597.x.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c360aabb-9bb8-46f0-8471-0b897e004bae