Identyfikatory
Warianty tytułu
Wykorzystanie pomiaru przesunięcia fazowego w transmisji ZigBee do pozycjonowania mobilnych robotów inspekcyjnych
Języki publikacji
Abstrakty
This paper presents the new approach to ZigBee ranging against the background of currently using techniques. This new approach involves a phase shift measurement instead of standard time of arrival or radio signal strength approaches. The ZigBee device used in this study and preliminary tests of ranging and positioning performed using phase shift measurements are presented. The positioning results encourages for further research on the performance verification and algorithms for processing of ranging results.
W artykule przedstawiono zmodyfikowane w stosunku do najczęściej obecnie stosowanych podejście do określania położenia obiektów wykorzystujące propagacje sygnały w protokole ZigBee. Typowe rozwiązania stosowane aktualnie w systemach lokalizacji opartych o bezprzewodowe sieci wymiany danych bazują na pomiarach czasu propagacji lub mocy sygnału. Opisane w artykule podejście odwołuje się do pomiaru przesunięcia fazowego sygnału wynikającego z wykorzystania do transmisji różnych częstotliwości. Przedstawione w artykule wstępne wyniki eksperymentów uzasadniają dalsze prace nad wykorzystaniem przedstawionej metody w zakresie opracowania algorytmów obliczeniowych pozycjonowania oraz weryfikacji efektów w warunkach rzeczywistych.
Czasopismo
Rocznik
Tom
Strony
101--107
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- University of Warmia and Mazury in Olsztyn, Faculty od Technical Science, 46A Sloneczna str. 10-710 Olsztyn, Poland
Bibliografia
- 1. Abidi M, Gonzales R. Data fusion in robotics & machine intelligence. Academic Press. 1992.
- 2. Adalja DM. A comparative analysis on indoor positioning Techniques and Systems. Int. J. Eng. Res. 2013;3: 1790-1796.
- 3. Anderson BDO, Moore JB. Optimal Filtering. Dover Publications, Mineola. NY. 2005.
- 4. Chen Q, Liu H, Yu M, Guo H. RSSI ranging model and 3D indoor positioning with ZigBee network. in: Position Location and Navigation Symposium (PLANS), 2012. https://doi.org/10.1109/PLANS.2012.6236979
- 5. Cobb HS. GPS pseudolites: Theory, design, and applications. Stanford University. 1997.
- 6. Cobb HS, Cohen CE, Parkinson BW. Theory and design of pseudolites, in: Proceedings of the 1994 National Technical Meeting of The Institute of Navigation. 1994: 69-75.
- 7. Ducatelle F, Caro GAD, Gambardella LM. Robot navigation in a networked swarm. in: Xiong C, Huang Y, Xiong Y, Liu H. (Eds.), Intelligent Robotics and Applications, Lecture Notes in Computer Science. Springer Berlin Heidelberg. 2008: 275-285.
- 8. Farid Z, Nordin R, Ismail M. Recent Advances in Wireless Indoor Localization Techniques and System. J. Comput. Netw. Commun. 2013. https://doi.org/10.1155/2013/185138
- 9. Grejne-Brzezinska D, Toth CK. GNSS-challenged environments: can collaborative navigation help? Journal of Aeronautics, Astronautics and Aviation. Series A. 2013; 12(01):24-248. https://doi.org/10.6125/13-0902-766
- 10. Hao Y, Guo Z, Sun F, Gao W. Adaptive Extended Kalman Filtering for SINS/GPS Integrated Navigation Systems. IEEE, 2009: 192–194. https://doi.org/10.1109/CSO.2009.429
- 11. Indelman V, Gurfil P, Rivlin E, Rotstein H. Distributed vision-aided cooperative localization and navigation based on three-view geometry, in: 2011 IEEE Aerospace Conference. https://doi.org/10.1109/AERO.2011.5747546
- 12. Janicka J, Rapinski J. An example and analysis for ambiguity resolution in the indoor ZigBee positioning system. Reports on Geodesy and Geoinformatics. 2017; 103:1-9, https://doi.org/10.1515/rgg-2017-0001
- 13. Janowski A, Rapinski J. Augmentation of GNSS autonomous positioning using a ground based ZigBee phase shift distance measurement. “Environmental Engineering” 10th International Conference Vilnius Gediminas Technical University Lithuania. 2017.
- 14. Janowski A, Rapinski J. The analyzes of PDOP factors for a ZigBee Grodnu-based. Polish Maritime Research. 2017. 24(s1): 108-114. https://doi.org/10.1515/pomr-2017-0028
- 15. Joana Halder S, Kim W. A fusion approach of RSSI and LQI for indoor localization system using adaptive smoothers. J. Comput. Netw. Commun. 2012, https://doi.org/10.1155/2012/790374
- 16. Lee JK, Grejner-Brzezinska. DA, Toth C. Networkbased Collaborative Navigation in GPS-Denied Environment. J. Navig. 2012; 65. https://doi.org/10.1017/S0373463312000069
- 17. Kee C, Jun H, Yun D, Kim B, Kim Y, Parkinson BW, Langenstein T, Pullen S. Lee J. Development of indoor navigation system using asynchronous pseudolites. Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation. 2012: 1038-1045.
- 18. Lourenco P, Batista P, Oliveira P, Silvestre C, Chen P. A received signal strength indication-based localization system, 21st Mediterranean Conference on Control Automation (MED). 2013: 1242-1247. https://doi.org/10.1109/MED.2013.6608878
- 19. Maisano DA, Jamshidi J, Franceschini F, Maropoulos PG, Mastrogiacomo L, Mileham A, Owen G. Indoor GPS: system functionality and initial performance evaluation. Int. J. Manuf. Res. 2008;3:335-349.
- 20. Narmada A, Sudhakara R. Performance comparison of routing protocols for ZigBee WPAN. IJCSI International Journal of Computer Science. 2011; 6(2):394-402.
- 21. Nejad S, Olyaee S. Comparison of TOF, FMCW and Phase-Shift Laser Range-Finding Methods by Simulation and Measurement. Quartarly J. Technol. Educ. 2006; 1: 11-18.
- 22. Peng R, Sichitiu ML. Angle of arrival localization for wireless sensor networks. 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, 2006: 374-382. https://doi.org/10.1109/SAHCN.2006.288442
- 23. Rapinski J, Cellmer S, Rzepecka Z. Modified GPS/Pseudolite Navigation Message. J. Navig. 2012; 65: 711-716. https://doi.org/10.1017/S0373463312000124
- 24. Rapinski J, Koziar M, Rzepecka Z, Cellmer S, Chrzanowski A. Some considerations in designing a GPS pseudolite. Artif. Satell. 2012; 47: 1-11. https://doi.org/10.2478/v10018-012-0009-7
- 25. Rapinski J, Smieja M. ZigBee ranging using phase shift measurements. The Journal of Navigation. 2015; 68(4): 665-677, https://doi.org/10.1017/S0373463315000028
- 26. Rapinski J, Cellmer S. Analysis of range based indoor positioning techniques for personal communication networks. Mobile Networks and Apllications. 2015, https://doi.org/10.1007/s11036-015-0646-8
- 27. Rodrigues ML, Vieira LFM, Campos MFM. Fingerprinting-based radio localization in indoor environments using multiple wireless technologies. IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). 2011 1203-1207. https://doi.org/10.1109/PIMRC.2011.6139691
- 28. Shen X, Wang Z, Jiang P, Lin R, Sun Y. Connectivity and RSSI based localization scheme for wireless sensor networks. in: Huang, DS, Zhang XP, Huang GB. (Eds.), Advances in Intelligent Computing, Lecture Notes in Computer Science. Springer Berlin Heidelberg. 2005: 578-587.
- 29. Turk MA, Morgenthaler DG, Gremban KD, Marra M. VITS-a vision system for autonomous land vehicle navigation. IEEE Trans. Pattern Anal. Mach. Intell. 1988:10, 342-361. https://doi.org/10.1109/34.3899
- 30. Van Diggelen F, Abraham C. Indoor GPS technology. CTIA Wirel. Agenda Dallas, 2001.
- 31. Friis HT. A Note on a Simple Transmission Formula. Proceedings of the IRE. 1946;34(5): 254-256. https://doi.org/10.1109/JRPROC.1946.234568.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c35fae66-d290-4ce2-9846-2a683adb996b