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ABSTRACT: Automatically recognizing and tracking dynamic targets on the sea is an important task for
intelligent navigation, which is the prerequisite and foundation of the realization of autonomous ships.
Nowadays, the radar is a typical perception system which is used to detect targets, but the radar echo cannot
depict the target’s shape and appearance, which affects the decision-making ability of the ship collision
avoidance. Therefore, visual perception system based on camera video is very useful for further supporting the
autonomous ship navigational system. However, ship’s recognition and tracking has been a challenge task in
the navigational application field due to the long distance detection and the ship itself motion. An effective and
stable approach is required to resolve this problem. In this paper, a novel ship recognition and tracking system
is proposed by using the deep learning framework. In this framework, the deep residual network and cross-
layer jump connection policy are employed to extract the advanced ship features which help enhance the
classification accuracy, thus improves the performance of the object recognition. Experimentally, the superiority
of the proposed ship recognition and tracking system was confirmed by comparing it with state of-the-art
algorithms on a large number of ship video datasets.

1 INTRODUCTION

With the rapid development of information
technology such as big data, artificial intelligence and
deep learning, the shipbuilding industry is moving
towards informatization and intelligence (Alexander
2011, Russell 2010, Lecun 2015). Intelligent ship visual
perception is the premise and foundation for
unmanned navigation (Zhang 2010). It can obviously
reduce the marine traffic accidents caused by human
factors, optimize the ship route, reduce the fuel
consumption, reduce the cost of ship operation, and
improve the safety of ship navigation. Ship
recognition and tracking is an indispensable part of
intelligent ship visual perception. It can identify
dangerous ship types, monitor the surrounding
environment and make reasonable ship collision

avoidance decisions, which is of great significance to
the promotion and development of intelligent ships.

In recent years, in order to deal with the visual
perception challenges of intelligent ships, research
institutions and scholars have processed the visual
perception data under the background of intelligent
ships (Johansson 1973). Ship detection, ship tracking
and ship type recognition have been extensively
studied. In ship detection, the emergence of visual
mechanism provides a good research idea for
detecting surface targets based on visible video
sequences. Kim et al. proposed an adaptive focusing
region of interest detection algorithm, and achieved
ideal detection results (Kim et al. 2015). Li accelerated
class detection and recognition by sharing
convolution neural network, which provided a new
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idea for water surface target detection (Li et al. 2016).
Some scholars excavated the video containing water
targets according to the learning mechanism of large
perspective, and generated the most possible set of
water surface targets according to the maximum
likelihood probability method (T'Jampens et al. & Zou
et al. 2016). Some scholars use multi-view method to
extract multiple features of water targets (such as
texture features, structural features, color features,
etc.). Sparse learning and multi-task learning are used
to fuse features, eliminate false targets and retain the
detected water targets (Albrecht 2011, Hong 2015,
Bergamasco 2016). In ship tracking, the traditional
method is to abstract the tracking ship as a particle
through the automatic identification system (AIS) and
radar (Xiao et al. 2015). Domel et al. applied the
correlation filtering algorithm to the tracking field,
and use a single gray feature to represent the target
for tracking (Bolme et al. 2010). In order to overcome
the shortcomings of traditional ship tracking
algorithms, Chen et al. proposed a ship moving
position tracking algorithm based on support vector
machine regression and game theory. Support vector
machine was used to estimate the position of the ship
to be tracked in order to improve the accuracy of ship
tracking position (Chen et al. 2017). Chen et al. fused
instruction filter and back stepping method to
construct a robust adaptive neural network tracking
controller for ship course (Chen et al. 2016). In the
aspect of ship type recognition, the above goal is
achieved by fusing sensor data information such as
self-identification system (AIS) and radar (Robards
2016, Shu 2017, Sang 2015). Jiang et al. also proposed
a ship type recognition method based on structural
feature analysis, which can effectively extract high-
resolution COSMO-SkyMed image features of bulk
carriers, container ships and tankers (JIANG et al.
2014). Chen et al. took into account the computational
complexity, recognition accuracy and the difference of
features extracted by various algorithms in ship type
recognition, and used support vector machine
algorithm to fuse the ship features extracted by the
above operators (Chen et al. 2016). The methods
mentioned above have achieved certain results for
ship visual perception under certain specific
conditions. However, in the era of intelligent ships,
higher requirements have been put forward in ship
detection, tracking and ship type recognition. It is
necessary to detect and recognize small targets of
ships by using relevant information collection and
sensing technology to determine potential collision
risk and help the decision-making system of
intelligent ships to determine interested ship targets.

With the increasing scale of maritime traffic and
the increasing complexity and diversification of the
surrounding environment of ships in voyage, at
present, it is mainly through the crew to judge the
type of ships around and the state of navigation
artificially. There are certain subjective errors, which
cannot meet the basic requirements of intelligent
ships. In this paper, a visual perception system for
intelligent ship is constructed based on the in-depth
learning framework. The ship-borne camera can
monitor the information around the ship and identify
other ship types in real time. This paper improves the
shallow network structure and multi-scale prediction
method of targets in the traditional deep learning,
introduces the idea of residual network (He et al.
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2015) effectively overcomes the problems of gradient
dispersion and gradient explosion, and improves the
ability of data feature learning. The network depth is
increased by cross-layer connection, and advanced
features of ships are extracted for combination
learning. On this basis, target region prediction and
classification prediction are integrated into a single
neural network model to realize the global
information of the image for target recognition. In the
case of high accuracy, fast target detection and ship
type recognition are realized.

2 INTELLIGENT VISUAL PERCEPTION SYSTEM
FOR SHIPS

With the rapid development of computer vision
theory and technology (Moeslund et al. 2001), it
provides a favorable technical support for data
visualization of intelligent ships. Intelligent ships
perceive the surrounding environment and their own
state through various sensors, and make decisions on
the perceived environment so as to realize the
auxiliary sailing and active safety of ships, even
autonomous sailing. Figure 1, shows the framework
of the proposed intelligent ship visual perception
system based on computer vision.

camera

Front vessel
identification

Rear anti-collision
warning

Ultrasonic

camera

Anti-collision warning
on both sides

Figure 1. Schematic diagram of ship visual perception
system.

Intelligent ship visual perception system collects
video image information during navigation by visual
sensors installed around ships, and processes it with
automatic  identification = system  (AIS) and
radar(Merchant et al. 2012). Vessel tracking and
recognition in the navigation area is the premise and
foundation of the intelligent ship visual perception.
By installing cameras on both sides of the ship, the
dynamic information of surrounding ships is
monitored and tracked. The possible dangerous can
be obtained, and the collision risk between the target
ship and the own-ship can be further determined.
Provide the crew with different degrees of danger
signals to help the crew make correct judgments. On
this basis, the types of other ships in the situation of
intersection and encounter are identified, and the
heading speed of the ship is adjusted dynamically
and timely to avoid the risk of collision and ensure
the safety of navigation. As shown in Figure 2, the
visual perception flow chart of a ship is constructed
by a ship-borne camera which is used to sense the
surrounding environment to obtain the traffic
situation near the ship, detect and identify the ship
type of another ship.
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Figure 2. Visual perception flow chart of shipborne camera.

3 TARGET RECOGNITION AND TRACKING
FRAMEWORK BASED ON DEEP LEARNING

In recent years, with the introduction of computer
vision and deep learning algorithms into the field of
target tracking and recognition, great breakthroughs
have been made in performance gradually, which
provides a new idea for the research of visual
perception of intelligent ships. In the visual
perception task for maritime traffic, it is necessary to
detect ships in the video sequence quickly, efficiently
and accurately through the ship-borne camera, and
identify the types of ships in real-time to help
intelligent ships more accurately judge the collision
risk and ensure the safe navigation of intelligent
ships.

Traditional deep learning network framework
mainly includes input layer, hidden layer and output
layer (Xu et al. 2016). The number of network layers is
relatively shallow, which cannot meet the basic
requirements of intelligent ships. Considering the
changes of ship imaging size, illumination, angle of
view, overlap of ship imaging and artificial

participation in the situation of intersection and
encounter, etc. Figure 3 is a network framework based
on deep learning structure for intelligent ship tracking
and recognition.

Figure 3. Target recognition and tracking framework based
on deep learning.

3.1 Training Model

In order to ensure the recognition accuracy and the
stability of the tracking of the visual perception
system, Residual structure is employed into the deep
neural network model to ensure that the network
structure is deep and convergent. The input samples
are convoluted to extract the corresponding features,
and then combined learning is carried out to get the
feature map model of the object, which initializes the
follow-up tracking and recognition model.

Convolution layer is the core component of the
neural network structure. The number of training
parameters of the neural network is reduced by the
sharing of receptive fields and weights. In
convolutional networks, the latter layer of neurons

extracts the local features of different locations of the
former layer of feature map to get the next layer of
feature map. In order to overcome effectively the
shortcomings of the deep neural network training and
accelerate the convergence speed of network training.
Batch Normalization (BN) operations are added after
each convolution layer to normalize the distribution
of input data into a mean value of 0 and a variance of
1.

On this basis, a cross-layer jump connection
method is added. By using the residual function F (u)
= H (u) - u, the layer-by-layer training of the deep
neural network structure is changed into stage-by-
stage training. The network structure is divided into
several sub-segments, each sub-segment contains a
relatively shallow number of network layers, and
each sub-segment contains a part of the total learning
deficit (total loss), which ultimately achieves a
relatively small overall loss. According to the training
network of ships, the mean square and error are used
as loss functions, which are composed of coordinate
error, IOU error and classification error. The
expressions are as follows:
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Among them, the first two lines represent the
coordinate error, the first line is the prediction of the
center coordinate of the bounding box, the second line
is the prediction of the width and height of the
bounding box, the third and fourth lines represent the
loss of confidence of the bounding box, and the fifth
line is the error of the prediction category. If there is
no target in a cell, the classification error will not be
propagated backward. When the object in the
bounding box and the one with the highest IOU in the
real frame propagate backward. The rest will not
proceed.

3.2 Ship Recognition and Tracking Model

By training the visual perception model obtained by
the network, feature maps of a certain size can be
obtained from the input image. Drawing on the idea
of Yolo algorithm (Redmon ] et al. 2015), the input
image is divided into corresponding size grids. Each
grid prediction priori box (clustered values) on the
feature graph contains four predictive values tx, ty, w,
h of which the first four are coordinates. The process
of obtaining bx, by, bw, bn from the actual prediction t,
ty, w, h is expressed as:

b, =o(t,)+c, @)
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b, =c(t,)+c, 3)
b,=P,-e" (4)
b, =P, -e" ®)

Among them, C, and C, are the number of the
first grid in the upper left Corner where the central
coordinates of the border are located. t, and t
are the center coordinates of the predicted border.
The o represents the logistic function, which
normalizes coordinates to 0-1. The final b, and b
are normalized values relative to the grld position.
The width and height of the predicted border are w
and h. Pw, Ph are the width and height of the
candidate box. The final b, and b, are normalized
values relative to candidate box posmons

In order to prevent the drift of ship tracking frame
and make the moving of target more robust, a penalty
mechanism is constructed to process the model
features and to represent and learn these features in
order to achieve the purpose of ship tracking in video
sequence. In order to obtain better tracking effect, we
introduce the coordinate prediction value as the cost
function. The penalty mechanism is as follows:
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For each feature K in the model, D is used to
represent the ship image tracking sequence, A is
the feature matrix of the ship feature graph, and ux
is the matrix representation of the sequence D.
is a cost function, which is used to evaluate the degree
of difference between ship target and ship feature
graph matrix in the first feature. P~ is the matrix
representation of the k-th feature. The global
representation matrix P is obtained by filling =
horizontally, which is similar to the global coefficient
matrix Q. The parameter |P| represe
independence of each feature of the model. | Q
represents the abnormal result of model tracking.
parameter A, represents the penalty degree of the
global coefficient matrix P, and the parameter A, is
the penalty coefficient corresponding to the global
coefficient matrix P.

For the recognition of ship types at sea, the spatial
distribution of ships overlaps, and the same frame
detection corresponds to two different ships. Thus,
only one ship type can be identified, resulting in a
decline in recognition rate. In this paper, multi-label
classification is used to predict the target category,
and the logical regression layer of multi-label and
multi-classification are added to the network
structure. The sigmoid function is used as the logistic
regression unit to classify each category. At the same
time, the cross-entropy cost function is used to
measure the difference between the predicted value
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and the actual value of the neural network.The
expression is as follows:

y=— 8)
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Among them, m is the total number of samples, T
is the label, with a value of 0 or 1. i represents the ship
sample and f (x) represents the predicted output.

4 EXPERIMENTAL ANALYSIS

4.1 Ship Data Image Set

At present, there are fewer ship-related data sets in
object detection related data sets, and fewer image
sets for merchant ship recognition tasks. Therefore,
this study collects five kinds of common merchant
ship images as sample sets by means of network
search. It mainly includes container ships, bulk
carriers, oil tankers, LNG vessels and fishing vessels.
In this study, 7402 images were collected, including
2320 images of container ships, 1050 images of
tankers, 1140 images of liquefied natural gas vessels,
1860 images of grocery vessels and 1032 images of
fishing vessels. 80% images of each ship type are
selected as training set, and the remaining 20%
images are selected as test set. Figure 4 shows pictures
of different ship types.

Container
ship

bulk cargo
ship

Qil tanker

Fishing
boat

LNG ship

Figure 4. Training sample set of different ship type pictures

4.2 Experimental Platform and Parameter Settings

The experimental platform of this study is Windows
10 operating system, 16G RAM, CPU processor's main
frequency is 3.2GHz, GPU is NVIDIA GTX 1050Tj,
display memory is 4G, test platform is PyCharm (2018
version). The specifications and parameters of the
ship-borne camera are listed in Table 1.



Table 1. Camera Specifications

Pixel 5 million
Lens size 8mm
Monitoring angle 41.5°
Monitoring distance 20-25m

The parameter setting of deep network structure is
the main task of network training. According to the
idea of transfer learning, the pre-training network
framework can be fine-tuned with its own training
data on the existing basic network, which can achieve
better training effect. This study is based on the pre-
training Darknet model. Some parameters are
initialized as shown in Table 2.

Table 2. Initialization tuning settings for network structure
parameters

Parameter Initial value
momentum 0.9

decay 0.0005
angle 0

saturation 15
exposure 1.5

hue 0.1
learning_rate 0.001
burn_in 1000
max_batches 500200
policy steps

steps 40000, 45000

4.3 Video Data Source for Ship Monitoring

The experimental data are based on the video data
collected by the cameras on both sides of the container
ship YUFENG of Shanghai Maritime University.
Figure 5 shows the installation position of the camera
of the container ship. The collected surveillance video
is divided into two groups to evaluate the
performance of ship detection algorithm. The first
group of ship surveillance video is used to evaluate
the detection performance of ship detection model
under different traffic conditions based on good
navigation environment. The second group of ship
surveillance video is based on the foggy navigation
environment, which is used to test the robustness and
accuracy of ship detection model under very low
visibility.

Figure 5. Installation location of ship-borne camera.

4.4  Analysis of experimental results

In order to verify the validity and reliability of the
detection, the training pictures contain pictures of
various meteorological and environmental scenarios.
According to the characteristics of convolution neural
network, illumination, sea surface environment and
other important factors will be automatically learned
by the model. In addition, since batch normalization
operation is included in our training process, the
generalization ability of the model can be greatly
improved, and the effects of different light intensity
can be effectively overcome. According to the average
loss curve of the number of iterations in the training
process shown in Figure 6, it is found that the loss of
the type is basically stable around 0.3 when the
number of iterations is 12,000. With the increase of the
number of iterations, the value of the average loss
function remains basically unchanged and tends to be
stable. It shows that the algorithm has fast
convergence in the training process.

The recall-accuracy curve is a performance index
of a classifier, which is used to reflect the accuracy
and accuracy of ship type recognition. In this
experiment, four common types of ships were
selected, namely container ship, bulk carrier, oil
tanker and fishing vessel. As shown in Figure 7, the
relationship curve between the recall rate and the
accuracy of the improved ship type is compared on
the basis of the original method. From the
experimental data, it can be seen that the area
enclosed by the accuracy and recall rate of ship
detection in this method is higher than that of the
original method, reflecting that the value of AP in the
data is obviously larger than that of the original
method. The recall rate can reach 85% without loss of
precision. When the recall rate reaches 80%, the
accuracy can still reach 80%, which fully illustrates
the accuracy of this method.

current avg loss = 01148 iteration = 50300

b 8020 100G 15060 20060 33100 3020 29140 40160 45180 %0

Press ‘s’ ts waves charijpg - Saved Meration number In efg max_batches=50200

Figure 6. Average loss function curve.

703



Bulk freighter_PR-cruve

as . L
| - Lot

a4

03{ — orgmatmeamsaros01010 a2{ — oot mthot . 053608 |
T oAt o et 20030545

o6 o 10 o2 a1 o8 o8 to
Recall Pecas

(a) P-R Curve of Fishing Ship. (b) P-R Curve of Bulk-
freighter Ship.

Cantainer_PR-cruve Oil Tanker PR cruve

—— Ongenal ethod AP0 204858
— wmproved methad AP0, 780473

Preciion

— Ogad method AP 132481 ¥
021 — mmproved m 0 seanes

Pecal Pecat

(c) P-R Curve of Container Ship. (d) P-R Curve of Oil
Tanker.
Figure 7. Contrast of P-R Curves of enhanced visual

perception method.

4.5 Contrastive experiments of different methods

In order to illustrate the effectiveness of this method,
the recognition performance of this model is further
validated by comparing the commonly used deep
learning target recognition methods. K-Nearest
Neighbor (KNN), Artificial Neural Network (ANN),
Traditional Neural Network (CNN) and Deep
Convolution Neural Network (DCNN) are used to
compare different ship types. Under the conditions of
this experiment, the unified agreement that IOU value
is greater than 0.75 is the correct target detection. The
results are shown in Table 3.

Table 3. Comparison of recognition accuracy of different
ship type recognition algorithms.

KNN ANN CNN DCNN Proposed
method
General cargo34.20% 30.10% 80.00% 86.00% 89.50%
ship
Bulk cargo  31.20% 33.10% 71.20% 72.50% 88.20%
ship
Container 53.20% 61.20% 85.20% 90.70% 96.80%
ship
LNG ship 42.10% 37.00% 63.20% 66.70% 82.70%
Oil tanker  46.10% 45.30% 79.50% 84.60% 90.50%
average 40.90% 42.60% 76.70% 81.40% 89.50%
value
Among the above five types of ship recognition

tasks, KNN and ANN algorithms have the lowest
recognition accuracy for grocery and bulk carriers,
which are 31.2% and 30.1% respectively, while CNN
method has the lowest recognition accuracy for LNG
ships, which is only 63.2%. The recognition accuracy
of DCNN algorithm for bulk carrier and LNG ship is
72.5% and 66.7% respectively, while the recognition
accuracy of the two ship types mentioned above is
88.2% and 82.7% respectively, and 96.8% for container
ship. The accuracy of ship type recognition based on
KNN (ANN) and DCNN (CNN, DCNN) shows that
the ship type recognition method based on this model
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cannot extract the characteristics of different ship
types very well, and the ship type recognition method
based on this model can find the depth features of
different ship types better, and can obtain better ship
recognition effect.

4.6 Experimental results

Key frames are extracted from ship-borne camera
surveillance video in different environments and
traffic flows to evaluate the detection performance of
the algorithm. This system detects the ship in video
sequence. From Figure 8, it is shown that in the video
scene with good navigation environment, the ship
tracking process shows a good tracking effect, and
accurately real-time display of the ship type.

In order to verify the robustness and accuracy of
the proposed algorithm, ship detection experiments
were carried out on ship-borne camera surveillance
video during fog navigation. Figure 9 shows that the
proposed algorithm can effectively overcome the
effects of haze weather and illumination changes, and
still track ships and identify ship types in the case of
low visibility. On the basis of identifying ship types,
ship visual perception tasks are further processed. As
shown in Figure 10, various ship types and important
parts of ships are accurately identified.

(a) 166 Frame

(b) 427 Frame
Figure 8. Tracking and Recognition Results of the System in
Video Scene with Good Navigation Environment.

(c) 877 Frame

(a) 211Frame (b) 524 Frame  (c) 660 Frame
Figure 9. Tracking and Recognition Results of the System
Diagram in a Foggy Navigation Environment Video Scene.

san

Figure 10. Recognition results of ship type and position.



5 CONCLUSION

In this paper, an intelligent ship vision enhancement
system based on deep learning framework is
proposed to solve the problem of ship tracking and

recognition for intelligent navigation visual
perception tasks. It effectively overcomes the
shortcomings of different illumination, different

weather, wind and wave conditions and artificial
participation. Future research work will integrate
radar, infrared and AIS data to obtain more long-
distance marine vessel monitoring and real-time
display of the ship's geographical location under poor
visual conditions.
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