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Abstract. In this article, we consider a class of nonlinear Dirichlet problems driven by
a Leray-Lions type operator with variable exponent. The main result establishes an existence
property by means of nonvariational arguments, that is, nonlinear monotone operator theory
and approximation method. Under some natural conditions, we show that a weak limit of
approximate solutions is a solution of the given quasilinear elliptic partial differential equation
involving variable exponent.

Keywords: Leray–Lions type operator, nonlinear monotone operator, approximation, variable
Lebesgue spaces.

Mathematics Subject Classification: 35J60, 35J70, 35J92, 58E05, 76A02.

1. INTRODUCTION

We are concerned with the following quasilinear elliptic partial differential equation
{
−∇ · a(x,∇u) = f in Ω,

u= 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω,
a : Ω× RN → RN is a vector-valued function, and f ∈W−1,p′(x)(Ω).

Equations of type (1.1) is an interesting topic of research due to its significant role
in the interplay between pure and applied nonlinear analysis as well as in many fields
of mathematics such as nonlinear partial differential equations, calculus of variations,
non-linear potential theory, non-Newtonian fluids, image processing to name a few
(see, e.g., [8, 9, 26,29] and references therein).

Operator −∇ · a(x, ·) appearing in problem (1.1) is a Leray–Lions type operator
(see [25]) and can be particularised to many well-known operators. To be more precise,
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in case of a(x, ξ) = |ξ|p(x)−2ξ, where p(x) ≥ 2, we get the p(x)-Laplace operator,
an operator acting from W

1,p(x)
0 (Ω) to its dual W−1,p′(x)(Ω), defined by

∆p(x)u := ∇ ·
(
|∇u|p(x)−2∇u

)
=

N∑

k=1

∂

∂xk

[∣∣∣∣
∂u

∂xk

∣∣∣∣
p(x)−2

∂u

∂xk

]
.

There are many classes of problems which are driven by the p(x)-Laplace-type operators,
for example, {

−∇ · (|∇u|p(x)−2∇u) = f(x, u), x ∈ Ω,
u= 0, x ∈ ∂Ω,

(1.2)

which is the p(x)-Laplace Poisson equation.
If we set ai(x, ξ) = |ξ|pi(x)−2ξ for all i ∈ {1, . . . , N}, where →p : Ω → RN is

a vectorial function →p (x) = (p1(x), . . . , pN (x)) with pi ∈ C(Ω), pi(x) ≥ 2, problem
(1.1) turns into

{
−∑N

i=1 ∂xi(|∂xiu|pi(x)−2∂xiu) = f(x, u), x ∈ Ω,
u= 0, x ∈ ∂Ω,

(1.3)

which is the anisotropic →p (·)-Laplace Poisson equation.
Moreover, if we set a(x, ξ) = (1 + |ξ|2)(p(x)−2)/2ξ, where ξ ∈ RN and p(x) ≥ 2,

then we obtain the generalized mean curvature operator

∇ · ((1 + |∇u|2)(p(x)−2)/2∇u)

which leads to the equation
{
−∇ · ((1 + |∇u|2)(p(x)−2)/2∇u) = f(x, u), x ∈ Ω,

u= 0, x ∈ ∂Ω,
(1.4)

See [6, 27,28] for further examples and applications for the operator a(x, ·).
We want to remark that application of nonlinear monotone operator theory and

approximation method to the problems of type (1.1) is not a new topic. For example,
in [5] the authors dealt with the equation

A(u) + g(x, u,∇u) = h, (1.5)

where A is a Leray-Lions type operator acting from W 1,p
0 (Ω) to W−1,p′(Ω),

h ∈W−1,p′(Ω) and g is a nonlinear lower order term with natural growth of order p
with respect to |∇u|. Using nonlinear monotone operator theory and approximation
method, the authors obtained unbounded solutions to problem (1.4).

Moreover, in [14] the authors studied the equation

N∑

k=1

∂

∂xk
ak(x, u,∇u)− c0|u|p−2u = f(x, u,∇u) (1.6)
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where a : Ω× RN → RN is a Carathéodory function, f is a nonlinear Carathéodory
function which has the growth of order p with respect to |∇u|, 1 < p < ∞ is a real
number and c0 is positive constant. Using nonlinear monotone operator theory, the
authors obtained bounded solutions to problem (1.5).

Recently, in [4], the authors studied the Dirichlet problem for multivalued elliptic
equations of the form

−∇ · a(x,∇u) 3 ∇ · h, u|∂Ω = 0, (1.7)

where a(x, ·) : Ω × RN → RN is maximal monotone operator for almost all x ∈
Ω, h is a given vector function in Musielak-Orlicz space W−1,ϕ′(Ω). In this paper,
the authors consider the so-called Lavrentiev phenomenon (see [32]). By applying
maximal monotone operator theory and approximation method, they obtained H- and
W -solutions for the multivalued problem (1.6) and its singlevalued version.

We would like to notice that there are many papers dealt with equation of the form
(1.1) in which nonlinearity is given under the natural growth of order p via monotone
operator methods and approximation methods (see, e.g., [2, 11,13,23] and references
therein). However, this is not the case for the equations of the form (1.1) involving
variable exponent of nonlinearity, that is, growth of order p(x). Rather, the authors
have usually applied variational methods along with critical point theory (see, e.g.,
[3, 4, 6, 18,21,22,31] and references therein).

2. PRELIMINARIES

We start with some basic concepts of variable Lebesgue spaces. For more details
we refer the readers to the monographs [1, 10,12,28], and the papers [15,19,24].

For any p ∈ C(Ω) with p− > 1, we define the variable exponent Lebesgue space by

Lp(x)(Ω) =



u | u : Ω→ R is measurable,

∫

Ω

|u(x)|p(x)dx <∞



 ,

then Lp(x)(Ω) endowed with the norm

|u|p(x) = inf



µ > 0 :

∫

Ω

∣∣∣∣
u(x)
µ

∣∣∣∣
p(x)

dx ≤ 1



 ,

becomes a Banach space.

Proposition 2.1 (Hölder Inequality). For any u ∈ Lp(x)(Ω) and v ∈ Lp
′(x)(Ω),

we have ∫

Ω

|uv|dx ≤ C(p−, (p−)′)|u|p(x)|v|p′(x).
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Proposition 2.2 (Young Inequality). Let p(x) > 1 for all x ∈ Ω and p(x)−1 +
p′(x)−1 = 1 or p′(x) = p(x)

p(x)−1 . Then, for all a, b ∈ RN

|a||b| ≤ p(x)−1|a|p(x) + p′(x)−1|b|p′(x).

The convex functional ρ : Lp(x)(Ω)→ R defined by

ρ(u) =
∫

Ω

|u(x)|p(x)dx

is called modular on Lp(x)(Ω).
Proposition 2.3. If u, un ∈ Lp(x)(Ω) (n = 1, 2, . . .), we have
(i) |u|p(x) < 1(= 1, > 1)⇔ ρ(u) < 1(= 1, > 1),
(ii) |u|p(x) > 1 =⇒ |u|p

−

p(x) ≤ ρ(u) ≤ |u|p
+

(x), |u|p(x) ≤ 1 =⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x),
(iii) lim

n→∞
|un|p(x) = 0⇔ lim

n→∞
ρ(un) = 0; lim

n→∞
|un|p(x) =∞⇔ lim

n→∞
ρ(un) =∞.

Proposition 2.4. If u, un ∈ Lp(x)(Ω) (n = 1, 2, . . .), then the following statements
are equivalent:
(i) lim

n→∞
|un − u|p(x) = 0,

(ii) lim
n→∞

ρ(un − u) = 0,
(iii) un → u in measure in Ω and lim

n→∞
ρ(un) = ρ(u).

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : ∇u ∈

N∏

i=1
Lp(x)(Ω)

}
,

with the norm
‖u‖1,p(x) = |u|p(x) + |∇u|p(x),

or equivalently

‖u‖1,p(x) = inf



µ > 0 :

∫

Ω

(∣∣∣∣
∇u(x)
µ

∣∣∣∣
p(x)

+
∣∣∣∣
u(x)
µ

∣∣∣∣
p(x)
)
dx ≤ 1





for all u ∈W 1,p(x)(Ω). The spaceW 1,p(x)
0 (Ω) is defined as C∞0 (Ω)‖·‖1,p(x) = W 1,p(x)(Ω),

and hence, u ∈ W
1,p(x)
0 (Ω) iff there exists a sequence (un) of C∞0 (Ω) such that

‖un − u‖1,p(x) → 0.
As a consequence of the Poincaré inequality, ‖u‖1,p(x) and |∇u|p(x) are equiva-

lent norms onW 1,p(x)
0 (Ω). Therefore, for any u ∈W 1,p(x)

0 (Ω) we can define an equivalent
norm ‖u‖ such that

‖u‖ = |∇u|p(x).
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Proposition 2.5. If 1 < p− ≤ p+ <∞, then the spaces Lp(x)(Ω) and W 1,p(x)(Ω) are
separable and reflexive Banach spaces.

Proposition 2.6. Let q ∈ C(Ω). If 1 ≤ q(x) < p∗(x) for all x ∈ Ω, then the embedding
W 1,p(x)(Ω) ↪→ Lq(x)(Ω)is compact and continuous, where

p∗(x) =
{

Np(x)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.

3. MAIN RESULTS

In the present paper, we show that if (un) ⊂W 1,p(x)
0 (Ω) such that un ⇀ u ∈W 1,p(x)

0 (Ω)
is a sequence of solutions to the approximate problem

{
−∇ · a(x,∇un) = f in Ω,

un = 0 on ∂Ω,
(3.1)

then u is a weak solution to problem (1.1) provided that f ∈W−1,p′(x)(Ω).
To this end, we assume the following hypotheses.
Let us define p ∈ C(Ω) as

1 < p− := min
x∈Ω

p(x) ≤ p(x) ≤ p+ := max
x∈Ω

p(x) <∞.

(a0) a : Ω× RN → RN is a Carathéodory function.
(a1) There exists a positive constant c0 such that

(a(x, ξ)− a(x, ζ)) · (ξ − ζ) ≥ c0(|ξ|+ |ζ|)p(x)−2|ξ − ζ|2

for all ξ, ζ ∈ RN and x ∈ Ω.
(a2) The following inequality holds

|a(x, ξ)| ≤ c1(h0 (x) + |ξ|p(x)−1),

for all ξ ∈ RN and x ∈ Ω, where p ∈ C(Ω) such that 1 < p(x) < N , c1 is
a positive real number, h0 ∈ Lp

′(x)(Ω) is a nonnegative function.
(a3)

a(x, 0) = 0, a.e. in Ω.

(a4) The following inequality holds

|a(x, ξ)− a(x, ζ)| ≤ c2(1 + |ξ|+ |ζ|)p(x)−1−α|ξ − ζ|α,

for all ξ, ζ ∈ RN and x ∈ Ω, where c2 is a positive real number and 0 < α < p−−1
is a constant.
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Remark 3.1. We want to notice that condition (a2) is a particular case of (a4) since
putting ζ = 0 in (a4) leads to (a2). Therefore, (a4) is consistent with the nonlinear
growth condition (a2) which is accepted as a natural growth of order p(x). We would
also like to mention that condition (a1) has been previously assumed in papers [20,30].

Let A be an operator from W
1,p(x)
0 (Ω) to its dual W−1,p′(x)(Ω) defined by

A(u) = −∇ · a(x,∇u).

Then the operator A is bounded, continuous and monotone due to the conditions
(a0)–(a3) (see [17, Theorem 2.1]).

Definition 3.2. We say that a function u ∈W 1,p(x)
0 (Ω) is a solution of the operator

equation
A(u) = f (3.2)

provided that for given any f ∈W−1,p′(x)(Ω) we have

〈A(u), ϕ〉 =
∫

Ω

a(x,∇u) · ∇ϕdx =
∫

Ω

fϕdx = 〈f, ϕ〉, for allϕ in W 1,p(x)
0 (Ω), (3.3)

where 〈·, ·〉 stands for the duality map between W 1,p(x)
0 (Ω) and W−1,p′(x)(Ω).

Remark 3.3. Equation (3.2) means that we have an equality between A(u) and f in
W−1,p′(x)(Ω), where A(u) is capable of acting on any ϕ ∈W 1,p(x)

0 (Ω) as

〈A(u), ϕ〉 = 〈f, ϕ〉

In conclusion, this means that we can understand the nature of A(u) ∈W−1,p′(x)(Ω)
through its effect on ϕ ∈W 1,p(x)

0 (Ω).

First, we provide a-priori estimate.

Lemma 3.4. Let (un) ⊂ W
1,p(x)
0 (Ω) be a sequence of solutions to (3.1). If f ∈

W−1,p′(x)(Ω), then there exists a positive constant K such that

‖un‖ ≤ K, for n = 1, 2, . . . (3.4)

that is, any sequence of solutions to problem (3.1) is uniformly bounded in W 1,p(x)
0 (Ω).

Proof. Since (un) ⊂ W
1,p(x)
0 (Ω) is a sequence of solutions to problem (3.1), then by

Definition 3.2, for n = 1, 2, . . . we must have
∫

Ω

a(x,∇un) · ∇undx =
∫

Ω

fundx. (3.5)

If ‖un‖ ≤ 1 for any n = 1, 2, . . ., then there is nothing to prove. Therefore, without
loss of generality, we may assume that ‖un‖ > 1 for all n = 1, 2, . . .. Then, applying
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condition (a1) for ζ = 0 and using Proposition 2.3, the Hölder inequality and the
continuous imbedding W 1,p(x)

0 (Ω) ↪→ Lp(x)(Ω) it reads

c3‖un‖p
− ≤

∫

Ω

c0|∇un|p(x)dx ≤
∫

Ω

fundx,

c3‖un‖p
− ≤ |f |p′(x)|un|p(x) ≤ c4‖un‖

which shows the uniform boundedness of sequence (‖un‖) since p− > 1, where c3, c4
are positive constants.

Theorem 3.5. Suppose that (un) ⊂ W
1,p(x)
0 (Ω) is a sequence of solutions to the

approximate problem (3.1). If un ⇀ u ∈W 1,p(x)
0 (Ω) and f ∈W−1,p′(x)(Ω), then u is

a weak solution to problem (1.1), that is, for every ϕ ∈ W 1,p(x)
0 (Ω), u ∈ W 1,p(x)

0 (Ω)
must satisfy the identity

∫

Ω

a(x,∇u) · ∇ϕdx =
∫

Ω

fϕdx. (3.6)

Proof. Let us assume that (un) ⊂ W
1,p(x)
0 (Ω) is a sequence of solutions to problem

(3.1). By Lemma 3.4 and reflexivity of W 1,p(x)
0 (Ω), we can extract a subsequence (not

relabelled) (un) ⊂W 1,p(x)
0 (Ω) such that un ⇀ u ∈W 1,p(x)

0 (Ω) and un → u ∈ Lp(x)(Ω).
From (a2), and the Hölder inequality, we have

|a(x,∇un)| ≤ c1(h0(x) + |∇un|p(x)−1) ≤ c|h0|p′(x)||un|p(x)−1|p(x) ≤ c‖un‖pM−1

which means that (a(x,∇un)) is bounded in Lp′(x)(Ω)N , where pM = max{p−, p+}.
Therefore, up to a subsequence if necessary, we have

a(x,∇un) ⇀ ξ ∈ Lp′(x)(Ω)N , (3.7)

for some ξ ∈ Lp′(x)(Ω)N =
∏N
i=1 L

p′(x)(Ω). This writing is mandatory because we
can not conclude directly the convergence a(x,∇un) ⇀ a(x,∇u) since nonlinearities
are not continuous with respect to weak convergence in general. Thus, combining (3.7)
and (3.5), we obtain

lim
n→∞

∫

Ω

a(x,∇un) · ∇ϕdx =
∫

Ω

ξ · ∇ϕdx =
∫

Ω

fϕdx, ϕ ∈W 1,p(x)
0 (Ω), (3.8)

where we put un = ϕ. On the other hand, employing monotonicity condition (a1)
we obtain that

∫

Ω

(a(x,∇un)− a(x,∇ω)) · (∇un −∇ω)dx ≥ 0 (3.9)
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for all ω ∈W 1,p(x)
0 (Ω). Next, if we substitute identity (3.5) in (3.9), and apply some

elementary calculations, we obtain
∫

Ω

[fun − a(x,∇un) · ∇ω − a(x,∇ω) · (∇un −∇ω)]dx ≥ 0. (3.10)

Considering un ⇀ u ∈W 1,p(x)
0 (Ω) and un → u ∈ Lp(x)(Ω) along with (3.6) lead us to

the inequality ∫

Ω

[fu− ξ · ∇ω − a(x,∇ω) · (∇u−∇ω)]dx ≥ 0. (3.11)

Since (3.8) holds for every ϕ ∈W 1,p(x)
0 (Ω), we can put ϕ = u. Then

∫

Ω

(ξ − a(x,∇ω)) · (∇u−∇ω)dx ≥ 0. (3.12)

Next, we apply Minty’s trick allowing us passing to weak limit within the nonlinearity.
To this end, let us put ω = u + εv for ε > 0, and let 0 6= v ∈ W 1,p(x)

0 (Ω) be fixed.
Then, if we let ε→ 0, it reads

∫

Ω

(ξ − a(x,∇u)) · ∇vdx ≤ 0. (3.13)

Applying the same argument for −v leads to
∫

Ω

(ξ − a(x,∇u)) · ∇vdx ≥ 0. (3.14)

Then (3.13) and (3.14) yield ξ = a(x,∇u). Using this information along with (3.8),
we obtain ∫

Ω

a(x,∇u) · ∇vdx =
∫

Ω

fvdx, v ∈W 1,p(x)
0 (Ω), (3.15)

which shows that u ∈W 1,p(x)
0 (Ω) is a weak solution to problem (1.1).

Lemma 3.6 ([7]). Let X be a reflexive real Banach space. Moreover, let T : X → X∗

be an operator satisfying the conditions:
(i) T is coercive, that is,

lim
‖u‖X→∞

〈T (u), u〉
‖u‖X

= +∞,

(ii) T is hemicontinuous, that is, T is directionally weakly continuous, iff the function

Ψ(γ) = 〈T (u+ γw), v〉

is continuous in γ on [0, 1] for every u,w, v ∈W 1,p(x)
0 (Ω),

(iii) T is monotone on the space X, that is, for all u, v ∈ X we have

〈T (u)− T (v) , u− v〉 ≥ 0. (3.16)
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Then the operator equation
T (u) = g (3.17)

has at least one solution u ∈ X for every g ∈ X∗. If, moreover, the inequality (3.16)
is strict for all u, v ∈ X, u 6= v, then the equation (3.17) has precisely one solution
u ∈ X for every g ∈ X∗.

In the sequel, we show that problem (1.1) has a unique solution.
Theorem 3.7 (Existence and uniqueness). Assume that (a0)–(a4) hold. Then,
for given any f ∈ W−1,p′(x)(Ω) the operator equation (3.2) has a unique solution
u ∈W 1,p(x)

0 (Ω) which in turn becomes a weak solution to problem (1.1).
Proof. First, we show that operator A is coercive. Without loss of generality, we may
suppose that ‖u‖ > 1. Then, by (a1) for ζ = 0, we have

〈A(u)−A(0), u〉 =
∫

Ω

a(x,∇u) · ∇udx ≥ c0
∫

Ω

|∇u|p(x)dx ≥ c0‖u‖p
+
,

lim
‖u‖→∞

〈A(u), u〉
‖u‖ ≥ lim

‖u‖→∞
c0‖u‖p

+−1 = +∞,

that is, A is coercive.
Next, we show that operatorA is hemicontinuous. To this end, using (a4), the Hölder

inequality and the inequality

|w + v|m ≤ 2m(|w|m + |v|m), for allw, v ∈ RN and m > 0, (3.18)

we have

|Ψ(γ1)−Ψ(γ2)| = |〈A(u+ γ1w)−A(u+ γ2w), v〉|

≤
∫

Ω

|(a(x,∇(u+ γ1w))− a(x,∇(u+ γ2w))||∇v|dx

≤ c|γ1 − γ2|α
∫

Ω

(1 + |∇u|+ |∇w|)p(x)−1−α|∇w|α|∇v|dx.

Let us define a function Θ : W 1,p(x)
0 (Ω)→ Lp(x)(Ω) by

Θ(u,w) = 1 + |∇u|+ |∇w|.

Then, for every u,w ∈W 1,p(x)
0 (Ω), we obtain

∫

Ω

(1 + |∇u|+ |∇w|)p(x)−1−α|∇w|α|∇v|dx

≤
∫

Ω

|Θ|p(x)−1−α|Θ|α|∇v|dx =
∫

Ω

|Θ|p(x)−1|∇v|dx

≤ ||Θ|p(x)−1|| p(x)
p(x)−1

|∇v|p(x) ≤ |Θ|pM−1
p(x) |∇v|p(x) <∞.
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So we are multiplying a bounded function with a function getting very small. The end
result should be small, namely, we obtain

|Ψ(γ1)−Ψ(γ2)| → 0 as γ1 → γ2

which means that A is hemicontinuous. As for monotonicity of A, it is enough to apply
condition (a1), that is,

〈A(u)−A(v), u− v〉 =
∫

Ω

(a(x,∇u)− a(x,∇v)) · (∇u−∇v)dx > 0

for all u, v ∈W 1,p(x)
0 (Ω) provided u 6= v.

In conclusion, the operator equation (3.2) has a unique solution.

Remark 3.8 (W 2,2
0 (Ω) regularity). In case of p(x) = 2, the assumption (a1) turns

into
(a(x, ξ)− a(x, ζ)) · (ξ − ζ) ≥ c0|ξ − ζ|2 (3.19)

or
N∑

i=1
(ai(x, ξ)− ai(x, η)) · (ξi − ζi) ≥ c0

N∑

i=1
(ξi − ζi)2,

where a = (a1, a2, . . . , aN ). Using (3.19), it can be obtained that any weak solution to
problem (1.1) belongs to W 2,2

0 (Ω), and hence, satisfies

−∇ · a(x,∇u) = f in Ω. (3.20)

As for the illustration, pick η ∈ RN and h ∈ R with h 6= 0 and put ξ = ζ+hη in (3.19).
Then, dividing the obtained inequality by h2, it leads to

N∑

i=1

(ai(x, ζ + hη)− ai(x, ζ))
h

ηi ≥ c0
N∑

i=1
η2
i . (3.21)

If we take the derivative of ai in the direction η, that is, letting h → 0 in (3.21),
we have

N∑

i,j=1
aij(x, ζ)ηjηi ≥ c0

N∑

i=1
η2
i , (3.22)

where ∇ξj
ai = aij . Therefore, (3.20) is an uniformly elliptic equation. For the proof of

W 2,2
0 (Ω) regularity of the weak solution, one can follow the same arguments and steps

given in Theorem 1 in [16, §6.3.1], so it is omitted here.

4. EXAMPLES

In the sequel we provide an example to illustrate the use of results obtained
in the previous chapter.
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Theorem 4.1. Assume that (a0)–(a4) hold, p(x) > 2 and h ∈ L∞(Ω). Then, the
following problem

{
−∇ · a(x,∇u) =−u|∇u|p(x)−2 + h in Ω,

u= 0 on ∂Ω,
(4.1)

has a unique solution u ∈W 1,p(x)
0 (Ω).

Proof. We set the nonlinear term g(x, u,∇u) = u|∇u|p(x)−2 and approximate g by
functions

gn = gn(x, u,∇u) := g(x, u,∇u)
1 + (1/n)|g(x, u,∇u)|

which is bounded, that is, |gn| ≤ n. To this end, we consider the following approximate
problem of (4.1)

{
−∇ · a(x,∇un) =−gn(x, un,∇un) + h in Ω,

un = 0 on ∂Ω,

and assume a sequence of solutions (un) ⊂W 1,p(x)
0 (Ω) satisfying

∫

Ω

a(x,∇un) · ∇ϕdx =
∫

Ω

gn(x, un,∇un)ϕdx+
∫

Ω

hϕdx (4.2)

for all ϕ ∈W 1,p(x)
0 (Ω) provided un ⇀ u in W 1,p(x)

0 (Ω).
First, we want to notice that gn(x, un,∇un) is Lp′(x)(Ω)-norm bounded. Indeed,

applying Young’s inequality for ε = p(x)− 1 and ε′ = p(x)−1
p(x)−2 and considering un ⇀ u

in W 1,p(x)
0 (Ω), we obtain

∫

Ω

|gn(x, un,∇un)|p′(x)dx =
∫

Ω

|un|p
′(x)|∇un|p

′(x)(p(x)−2)dx

≤
∫

Ω

[
1
ε
|un|p(x) + 1

ε′
|∇un|p(x)

]
dx ≤ K1.

Therefore, according to Theorem 3.5, u ∈W 1,p(x)
0 (Ω) is a weak solution to problem

(4.1).
To proceed, we need to show that un → u in W 1,p(x)

0 (Ω). From the weak lower
semicontinuity of modular ρ, we already have

lim inf
n→∞

ρ(∇un) ≥ ρ(∇u) (4.3)
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Without loss of generality we may choose a(x, ξ) = |ξ|p(x)−2ξ in problem (4.1) since it
satisfies all conditions (a0)-(a4) under some proper constants. Then, for t ∈ (0, 1) and
by (a1) we can write

| − ∇u|p(x) − | − ∇un|p(x) − p(x)a(x,−∇un) · (∇un −∇u)

= p(x)
1∫

0

(
d

dt

| − ∇un + t(∇un −∇u)|p(x)

p(x) − a(x,−∇un) · (∇un −∇u)
)
dt

= p(x)
1∫

0

(a(x,−∇un + t(∇un −∇u))− a(x,−∇un)) · (t(∇un −∇u))1
t
dt

≥ c0p(x)
1∫

0

(| − ∇un + t(∇un −∇u)|+ | − ∇un|)p(x)−2|∇un −∇u|2tdt ≥ 0

and hence
∫

Ω

| − ∇un|p(x)dx−
∫

Ω

| − ∇u|p(x)dx ≤ −pm
∫

Ω

a(x,−∇un) · (∇un −∇u)dx, (4.4)

where pm = min{p−, p+}. On the other hand, since gn(x, un,∇un) is Lp′(x)(Ω)-norm
bounded, un → u in Lp(x)(Ω), and un → u a.e. in Ω, by applying the Hölder inequality,
we obtain
∫

Ω

a(x,−∇un) · (∇un −∇u)dx =
∫

Ω

gn(x, un,−∇un)(un − u)dx+
∫

Ω

h(un − u)dx

≤ |gn|p′(x)|un − u|p(x) + c

∫

Ω

|un − u|dx

→ 0 as n→∞
which, along with (4.4), implies that

lim sup
n→∞

∫

Ω

| − ∇un|p(x)dx ≤
∫

Ω

| − ∇u|p(x)dx

or
lim sup
n→∞

ρ(∇un) ≤ ρ(∇u). (4.5)

Then, (4.3) and (4.5) lead to

lim
n→∞

ρ(∇un) = ρ(∇u).

From condition (a1) and assumption un ⇀ u in W
1,p(x)
0 (Ω), (∇un) converges in

measure to ∇u in Ω. In conclusion, by Proposition 2.4, we obtain that

lim
n→∞

|∇un −∇u|p(x) = 0 (4.6)
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that is,
un → u in W 1,p(x)

0 (Ω) and ∇un → ∇u a.e. in Ω (4.7)

Because of (4.6) and (4.7), the function g(x, u,∇u) = u|∇u|p(x)−2 is continuous in the
two last arguments. Therefore, by (4.7), we obtain

gn(x, un,∇un)→ g(x, u,∇u) a.e. in Ω. (4.8)

On the other hand, by the Hölder inequality we have

0 ≤
∫

Ω

gn(x, un,∇un)undx =
∫

Ω

|un|2|∇un|p(x)−2dx

≤ ||un|2| p(x)
2
||∇un|p(x)−2| p(x)

p(x)−2
≤ K2.

Let E ⊂ Ω be a measurable subset. Let us choose an arbitrary real number δ > 0
such that |E| < δ. Then, by considering the fact that sequences (un), (∇un) converge
strongly in Lp(x)(Ω) and Lp(x)(Ω)N , respectively, we have

∫

E

|gn(x, un,∇un)|dx

=
∫

E∩{|un(x)|≤k}

|gn(x, un,∇un)|dx+
∫

E∩{|un(x)|>k}

|gn(x, un,∇un)|dx

≤
∫

E∩{|un(x)|≤k}

|gn(x, un,∇un)|dx+ 1
k

∫

Ω

gn(x, un,∇un)undx

≤
∫

E∩{|un(x)|≤k}

|un||∇un|p(x)−2dx+ 1
k
K2

which means the equi-integrability of gn(x, un,∇un). In conclusion, by (4.8) and
Vitali’s theorem, we obtain

gn(x, un,∇un)→ g(x, u,∇u) strongly in L1(Ω). (4.9)

Therefore, by (4.7) and (4.9), if we pass the limit in (4.2), we obtain that
∫

Ω

a(x,∇u) · ∇ϕdx =
∫

Ω

g(x, u,∇u)ϕdx+
∫

Ω

hϕdx

which means that u ∈ W
1,p(x)
0 (Ω) is a nontrivial weak solution to problem (4.1).

Moreover, because of assumption (a1), this solution is unique.
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