Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the effects of sodium chloride on the rheological properties of aqueous solutions of cocamidopropyl betaine (CAPB) and sodium dodecylbenzene sulfonate (SDBS) mixtures. Studies were carried out in the CAPB/SDBS molar ratio range of 0.95 to 3.5, at sodium chloride concentrations varying from 0.03 M to 0.75 M. Continuous and oscillatory flow measurements showed that the impact of sodium chloride concentration on shear viscosity and relaxation time was closely linked to the CAPB/SDBS molar ratio. The maximum shear viscosity and the longest Maxwell relaxation time were obtained at the CAPB/SDBS molar ratio of 2. Based on CryoTEM images, it was determined that the shear viscosity and relaxation time peaks identified at a certain concentration of sodium chloride could be attributed to the transition of the entangled wormlike micellar network into branched wormlike micelles. Changes in the micellar microstructure accompanying modifications of the CAPB/SDBS molar ratio and sodium chloride concentration were accounted for on the basis of the packing parameter.
Rocznik
Tom
Strony
art. no. e10
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznań, Poland
autor
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznań, Poland
autor
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznań, Poland
autor
- Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznań, Poland
Bibliografia
- 1. Bao X.-N., Zhang W.-D., Gang H.-Z., Yang S.-Z., Li Y.-C., Mu B.-Z., 2021. Formation of viscoelastic micellar solutions by a novel cationic surfactant and anionic salt system. Colloids Surf., A, 611, 125795. DOI: 10.1016/j.colsurfa.2020.125795.
- 2. Cates M.E., 1987. Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules, 20, 2289–2296. DOI: 10.1021/MA00175A038.
- 3. Chu Z., Dreiss C.A., Feng Y., 2013. Smart wormlike micelles.Chem. Soc. Rev., 42, 7174–7203. DOI: 10.1039/c3cs35490c.
- 4. de Gennes P.G. 1979. Scaling concepts in polymer physics. Cornell University Press, Ithaca, NY, USA.
- 5. Dreiss C.A., 2007. Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter, 3, 956–970. DOI: 10.1039/b705775j.
- 6. Fieber W., Scheklaukov A., Kunz W., Pleines M., Benczédi D., Zemb T., 2021. Towards a general understanding of the efects of hydrophobic additives on the viscosity of surfactant solutions. J. Mol. Liq., 329, 115523. DOI: 10.1016/j.molliq.2021.115523.
- 7. Granek R., Cates M.E., 1992. Stress relaxation in living polymers: results from a Poisson renewal model. J. Chem. Phys., 96, 4758–4767. DOI: 10.1063/1.462787.
- 8. Israelachvili J.N., Mitchell D.J., Ninham B.W., 1976. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc., Faraday Trans. 2, 72, 1525–1568. DOI: 10.1039/F29767201525.
- 9. Jamadagni S.N., Ko X., Thomas J.B., Eike D.M., 2021. Salt-and pH-dependent viscosity of SDS/LAPB solutions: Experiments and a semiempirical thermodynamic model. Langmuir, 37, 8714–8725. DOI: 10.1021/acs.langmuir.1c00964.
- 10. Lequeux F., 1992. Reptation of connected wormlike micelles. Europhys. Lett., 19, 675. DOI: 10.1209/0295-5075/19/8/003.
- 11. López-Díaz D., Castillo R., 2010. The wormlike micellar solution made of a zwitterionic surfactant (TDPS), an anionic surfactant (SDS), and brine in the semidilute regime. J. Phys. Chem. B., 114, 8917–8925. DOI: 10.1021/jp102108y.
- 12. Lutz-Bueno V., Pasquino R., Liebi M., Kohlbrecher J., Fischer P., 2016. Viscoelasticity enhancement of surfactant solutions depends on molecular conformation: Influence of surfactant head-group structure and its counterion. Langmuir, 32, 17, 4239– 4250. DOI: 10.1021/acs.langmuir.6b00776.
- 13. Pandya N., Rajput G., Janni D.S., Subramanyam G., Ray D., Aswal V., Varade D., 2021. SLES/CMEA mixed surfactantsystem: Effect of electrolyte on interfacial behavior and mi- crostructures in aqueous media. J. Mol. Liq., 325, 115096, 1–8.DOI: 10.1016/j.molliq.2020.115096.
- 14. Parker A., Fieber W., 2013. Viscoelasticity of anionic worm-like micelles: effects of ionic strength and small hydrophobic molecules. Soft Matter, 9, 1203–1213. DOI: 10.1039/C2SM27078A.
- 15. Różańska S., 2015. Rheology of wormlike micelles in mixed solutions of cocamidopropyl betaine and sodium dodecylben-zenesulfonate. Colloids Surf., A, 482, 394–402. DOI: 10.1016/j.colsurfa.2015.06.045.
- 16. Różańska S., Różański J., 2019. Shear and extensional rheology of aqueous solutions of cocamidopropyl betaine and sodium dodecyl sulfate mixture. J. Dispersion Sci. Technol., 41, 733–741. DOI: 10.1080/01932691.2019.1611442.
- 17. Schubert B.A., Kaler E.W., Wagner N.J., 2003. The microstructure and rheology of mixed cationic/anionic wormlike micelles. Langmuir, 19, 4079–4089. DOI: 10.1021/la020821c.
- 18. Shibaev A.V., Ospennikov A.S., Kuklin A.I., Arkharova N.A., Orekhov A.S., Philippova O.E., 2020. Structure, rheological and responsive properties of a new mixed viscoelastic surfactant system. Colloids Surf., A, 586, 124284. DOI: 10.1016/j.colsurfa.2019.124284.
- 19. Yang Y., 2002. Viscoelastic wormlike micelles and their applications. Curr. Opin.Colloid Interface Sci., 7, 276–281. DOI:10.1016/S1359-0294.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c35154da-decf-4bd3-adb8-3e5a086badc4