PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Znaczenie odzysku ciepła odpadowego z instalacji produkującej dimetyloeter w ochronie środowiska

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Importance of Waste Heat Recovery from Dimethyl Ether Production Plant in Environment Protection
Języki publikacji
PL
Abstrakty
EN
The paper presents a computational simulation energy recovery of methanol dehydration to dimethyl ether (DME) in industrial process plant. Heat recovery technology from the viewpoint of energy saving in the environmental protection for the two key nodes in the system: reactor and distillation column was examined. Limited energy helps reduce emissions associated with the combustion of fuels into the atmosphere. Currently operating technological installations should be characterized by energy- and material savings, where significantly reducing the impact of harmful emissions into the environment. These simulations are a valuable tool to support the design of installation to preliminary estimate benefits of circuit materials and energy which introduces a significant innovation in the environmental protection.
Rocznik
Strony
1674--1683
Opis fizyczny
Bibliogr. 14 poz., tab., rys.
Twórcy
  • Główny Instytut Górnictwa, Katowice
Bibliografia
  • 1. Alam M., Fujita O., Ito K.: Performance of NOx reduction catalysts with simulated dimethyl ether diesel engine exhaust gas. Journal of Power and Energy. 218, 89–93 (2004).
  • 2. Czaplicka-Kolarz K., Kruczek M., Burchard-Korol D.: Koncepcja ekoefektywności w zrównoważonym zarządzaniu produkcją. Zeszyty Naukowe Politechniki Śląskiej. 63, 59–71 (2013).
  • 3. Galvita V., Semin G., Belyaev V., Yuieva T., Sobyanin V.: Production of hydrogen from dimethyl ether. Applied Catalysis. 216, 85–90 (2001).
  • 4. Kansha Y., Tsuru N.,Sato K., Fushimi C., Tsutsumi A.: Self-heat recuperation technology for energy saving in chemical processes, Ind. Eng. Chem. Res. 48, 7682–7686 (2009).
  • 5. Kansha Y., Kishimoto A., Tsutsumi A.: Application of the self-heat recuperation technology to crude oil distillation, Appl. Therm. Eng. 43, 153– 157(2012).
  • 6. Kl N., Chadwik D., Toseland B.: Kinetics and modelling of dimethyl ether synthesis from synthesis gas. Chemical Engineering Science. 54, 3587–3592 (1999).
  • 7. Lu W., Teng L., Xiao W.: Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor. Chemical Engineering Science. 59, 5455–5464 (2004).
  • 8. Matsuda K., Kawazuishi K., Hirochi Y., Sato R., Kansha Y., Fushimi C., Shikatani Y., Kunikiyo H., Tsutsumi A.: Advanced energy saving in the reaction section of hydro-desulfurization process with self-heat recuperation technology, Appl. Therm. Eng. 30, 2300–2306 (2010).
  • 9. Matsuda K., Kawazuishi K., Kansha Y., Fushimi C., Nagao M., Kunikiyo H., Masuda F., Tsutsumi A.: Advanced energy saving in distillation process with self-heat recuperation technology, Energy. 36, 4640–4645 (2011).
  • 10. Mi T., Uchida M.: Fuel DME Plant in East Asia. Proceedings of 15th SaudiJapan Joint Symposium, Dhahran, Saudi Arabia, November. 27–28 (2005).
  • 11. Sorenson S.: Dimethyl ether in diesel engines: progress and perspectives.Gas Turbines Power. 123, 652–658 (2001).
  • 12. Tartamella T., Lee S.: Development of speciality chemicals from dimethyl ether. Fuel Process Technology. 38, 228 (1997).
  • 13. Wodołażski A.: Modelling of the methanol synthesis in plate microreactor. Electrical Review. 1, 76–79 (2013).
  • 14. Zh N., Liu H., Liu D., Ying W., Fang D.: Intrinsic kinetics of dimethyl ether synthesis from syngas. Journal of Natural Gas Chemistry. 14, 22–28 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c34f2aab-6553-4649-8fe8-31e928da2ca1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.