Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present study attempted to identify the current status and stressors affecting spring water properties in an urban area, using the example of the Warsaw agglomeration. For this purpose, they study monitored hydrological and hydrochemical properties of three springs, each draining a Quaternary porous aquifer and representing different anthropopressure across the city. The measurements of discharge and physico-chemical parameters were carried out regularly twice a month from June 2023 to May 2024, while the chemical composition, including main cations and anions, was determined once every two-month period using ion chromatography. The results documented a good agreement between the degree and timing of impact of human-induced alternations and the physico-chemical properties of spring waters. The highest total dissolved solids (TDS) and concentrations of Cl-, SO42-, and Na+ were measured in the most urbanised areas. Seasonal changes in the spring water chemistry, primarily in terms of main anions, confirmed their anthropogenic origin, related to different deposition and migration over time. A comparison with archival data proved significant long-term transformation of spring properties, including gradual decrease of their discharge, increase in water temperature, and changes to the hydrochemical type. Such an evolution of groundwater quality reflects the impact of climate warming and human activities, including increase in the degree of imperviousness as a result of urbanisation, application of road maintenance chemicals, and emission of pollution to the atmosphere. The results provide the most recent insight on shallow groundwater status and stressors in Warsaw and reflect intensive modification of the aquifer system across the urban environment.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
15--23
Opis fizyczny
Bibliogr. 42 poz., fot., mapa, rys., tab., wykr.
Twórcy
autor
- University of Warsaw, Faculty of Geography and Regional Studies, Department of Physical Geography, Warsaw, Poland
autor
- University of Warsaw, Faculty of Geography and Regional Studies, Department of Physical Geography, Warsaw, Poland
autor
- University of Warsaw, Faculty of Geography and Regional Studies, Department of Physical Geography, Warsaw, Poland
autor
- University of Warsaw, Faculty of Geography and Regional Studies, Department of Physical Geography, Warsaw, Poland
Bibliografia
- Baba, A. and Gündüz, O. (2017) “Effect of geogenic factors on water quality and its relation to human health around Mount Ida, Turkey,” Water, 9(1), 66. Available at: https://doi.org/10.3390/w9010066.
- Barquin, J. and Scarsbrook, M. (2008) “Management and conservation strategies for coldwater springs,” Aquatic Conservation: Marine And Freshwater Ecosystems, 18, pp. 580–591. Available at: https://doi.org/10.1002/aqc.884.
- Bartnik, A. and Moniewski, P. (2019) “Multiannual variability of spring discharge in southern Poland,” Episodes, 42(3), pp. 187–198. Available at: https://doi.org/10.18814/epiiugs/2019/019015.
- Bernatowicz, T. (2022) “Architektoniczne transformacje Villa Regia z czasów Wazów [Architectural transformations of the Villa Regia during the time of the Vasas],” Kronika Zamkowa – Roczniki, 9(75), pp. 81–111.
- Chauhana, R. et. al. (2023) “The degradation of spring water resources in Nepal: Some policy gaps,” Water Policy, 25(4), pp. 338–358. Available at: https://doi.org/10.2166/wp.2023.159.
- Caro-Borrero, A. et al. (2024) ““The springs are untouchable”: Amid community management and government neglect, the last springs in peri-urban areas of Mexico City”, Urban Ecosystems, 27, pp. 545–562. Available at: https://doi.org/10.1007/s11252-023-01453-6.
- Cygański, K. and Woźniak, E. (1997a) Mapa hydrogeologiczna Polski w skali 1:50 000, Arkusz Warszawa-Wschód [Hydrogeological map of Poland at a scale of 1:50,000. Warsaw-East sheet]. Warszawa: Państwowy Instytut Geologiczny.
- Cygański, K. and Woźniak, E. (1997b) Mapa Hydrogeologiczna Polski w skali 1:50 000, Arkusz Warszawa-Zachód [Hydrogeological map of Poland at a scale of 1:50,000. Warsaw-West sheet]. Warszawa: Państwowy Instytut Geologiczny.
- Dziedziczak, R. (2006) “Antropomineralne wody źródeł Warszawy [Anthropomineral waters of Warsaw springs],” Przegląd Geologiczny, 54(11), pp. 982–986.
- Ferencz, B., Dawidek, J. and Bronowicka-Mielniczuk, U. (2022) “Alteration of yield and springs number as an indicator of climate changes: Case study of Eastern Poland,” Ecological Indicators, 138. Available at: https://doi.org/10.1016/j.ecolind.2022.108798.
- Foster, W., Nicolson, J. and Hazlett, P. (1989) “Temporal variation in nitrate and nutrient cations in drainage waters from a deciduous forest,” Journal of Environmental Quality, 18, pp. 238–244. Available at: https://doi.org/10.2134/jeq1989.00472425001800020020x.
- Gaglioti, S. et al. (2019) “Geochemical characterization of spring waters in the Crati River Basin, Calabria (Southern Italy),” Geofluids, 2019(1). Available at: https://doi.org/10.1155/2019/3850148.
- Geoportal (no date) Topographic Objects Database (BDOT10k). Available at: https://www.geoportal.gov.pl/en/data/topographic-objects-database-bdot10k/ (Accessed: June 16, 2024).
- Hajnrych, M., Blachowski, J. and Worsa-Kozak, M. (2023) “Study of groundwater temperature spatio-temporal variation in the city of Wroclaw: Preliminary results,” IOP Conference Series: Earth and Environmental Science, 1189, 012028. Available at: https://doi.org/10.1088/1755-1315/1189/1/012028.
- Havlin, J.L. (2013) “Fertility,” Reference Module in Earth Systems and Environmental Sciences. Available at: https://doi.org/10.1016/B978-0-12-409548-9.05162-9.
- Jekatierynczuk-Rudczyk, E. et al. (2022) “The role of the catchment area in shaping water quality in the lowland springs of the Knyszyn Forest (NE Poland),” Water, 14(20), 3202. Available at: https://doi.org/10.3390/w14203202.
- Kresic, N. (2010) “Sustainability and management of springs,” in N. Kresic and Z. Stevanovic (eds.) Groundwater Hydrology of Springs. Butterworth-Heinemann, pp. 1–29. Available at: https://doi.org/10.1016/C2009-0-19145-6.
- Krogulec, E. et al. (2020) “Assessment of causes and effects of groundwater level change in an urban area (Warsaw, Poland),” Water, 12(11), 3107. Available at: https://doi.org/10.3390/w12113107.
- Krogulec, E. et al. (2022) “Causes of groundwater level and chemistry changes in an urban area: A case study of Warsaw, Poland,” Acta Geologica Polonica, 72(4), pp. 495–517. Available at: https://doi.org/10.24425/agp.2022.142645.
- Kuchcik, M. et al. (2014) “Urban climate research in Warsaw: The results of microclimate network measurements,” Geographia Polonica, 87(4), pp. 491–504. Available at: http://dx.doi.org/10.7163/GPol.2014.33.
- Kużawa, R. and Gutry-Korycka, M. (2002) “Źródła Skarpy Warszawskiej [Springs of the glacial upland slope in Warsaw],” Prace i Studia Geograficzne, 31, pp. 257–278.
- Łaszewski, M. et al. (2024) “Cechy fizyczno-chemiczne wód źródeł okolic Nowego Miasta nad Pilicą [Physico-chemical properties of spring water near Nowe Miasto nad Pilicą],” Acta Geographica Lodziensia, 115, pp. 83–98. Available at: https://doi.org/10.26485/AGL/2024/115/4.
- Macioszczyk, A. (1987) Hydrogeochemia [Hydrogeochemistry]. Warszawa: Wydawnictwa Geologiczne.
- Marosz, M., Miętus, M. and Biernacik, D. (2023) “Features of multiannual air temperature variability in Poland (1951–2021),” Atmosphere, 14(2), 282. Available at: https://doi.org/10.3390/atmos14020282.
- Matsuyama, H. (2014) “Global warming and urbanization affect springwater temperatures in Tokyo, Japan,” IOP Conference Series: Earth and Environmental Science, 18, 8th International Symposium of the Digital Earth (ISDE8) 26–29 August 2013, Kuching, Sarawak, Malaysia. Available at: https://doi.org/10.1088/1755-1315/18/1/012102.
- Mazurek, M. (2008) “Czynniki kształtujące skład chemiczny wypływów wód podziemnych w południowej części dorzecza Parsęty (Pomorze Zachodnie) [Factors affecting the chemical composition of groundwater outflows in the southern part of the Parsęta drainage basin (West Pomerania)],” Przegląd Geologiczny, 56(2), pp. 131–139.
- Moniewski, P. (2004) Źródła okolic Łodzi [Springs near Łódź]. Łódź: Łódzkie Towarzystwo Naukowe.
- Mostowik, K. et al. (2021) “Spring recharge and groundwater flow patterns in flysch aquifer in the Polonina Wetlińska Massif in the Carpathian Mountains,” Journal of Mountain Science, 18(4), pp. 819–833. Available at: https://doi.org/10.1007/s11629-020-6524-2.
- Nowicki, Z. and Sadurski, A. (2010) “Hydrological aspects of quaternary sediments in Poland,” Biuletyn Państwowego Instytutu Geologicznego, 441, pp. 123–130. Available at: https://geojournals.pgi.gov.pl/bp/article/view/28882/20554 (Accessed: June 16, 2024).
- Peel, M.C., Finlayson, B.L. and McMahon, T. (2007) “Updated world map of the Köppen-Geiger climate classification,” Hydrology and Earth System Sciences, 10(2), pp. 1633–1644. Available at: https://doi.org/10.5194/hess-11-1633-2007.
- Pich, J. and Płochniewski, Z. (1968) “Chemizm wód ze źródeł występujących na obszarze Warszawy [Chemism of spring waters in the area of Warsaw],” Przegląd Geologiczny, 16(11), pp. 511–517.
- Pusz, J.B. (1844) “O temperaturze źródeł w okolicy Warszawy [About the spring temperature near Warsaw],” Biblioteka Warszawska, 3, pp. 1–36.
- Siepak, M., Lewandowska, A. and Sojka, M. (2023) “Variability in the chemical composition of spring waters in the Postomia River catchment (Northwest Poland),” Water, 15(1), 157. Available at: https://doi.org/10.3390/w15010157.
- Siwek, J. (2012) “Zawartość azotanów (V) w wodach źródeł na Wyżynie Krakowsko-Częstochowskiej [Nitrate concentration in spring-water in Kraków-Częstochowa Upland]” in W. Marszelewski (ed.) Gospodarowanie wodą w warunkach zmieniającego się środowiska [Water management in a changing environment]. Monografie Komisji Hydrologicznej Polskiego Towarzystwa Geograficznego. Toruń: Komisja Hydrologiczna PTG, pp. 147–157.
- Siwek, J. and Pociask-Karteczka, J. (2017) “Springs in South-Central Poland – changes and threats,” International Union of Geological Sciences, 40(1), pp. 38–46. Available at: https://doi.org/10.18814/epiiugs/2017/v40i1/017006.
- Somorowska, U. (2022) “Changes in terrestrial evaporation across Poland over the past four decades dominated by increases in summer months,” Resources, 11(1), 6. Available at: https://doi.org/10.3390/resources11010006.
- Somorowska, U. (2024) “Assessing the impact of climate change on snowfall conditions in Poland based on the snow fraction sensitivity index,” Resources, 13(5), 60. Available at: https://doi.org/10.3390/resources13050060.
- Sówka, I. et al. (2019) “Analysis of particulate matter concentration variability and origin in selected urban areas in Poland,” Water, 11(20), 5735. Available at: https://doi.org/10.3390/su11205735. Szczucińska, A. (2016) “Spring water chemistry in a formerly glaciated area of western Poland: The contribution of natural and anthropogenic factors,” Environmental Earth Sciences, 75, 712. Available at: https://doi.org/10.1007/s12665-016-5548-y.
- Tomczyk, A.M. and Bednorz, E. (2022) Atlas klimatu Polski (1991–2020) [Climate atlas of Poland (1991–2020)]. Poznań: Bogucki Wydawnictwo Naukowe.
- Uliasz-Misiak, B. et al. (2022) “Impact of road transport on ground-water quality,” Science of The Total Environment, 824, 153804. Available at: https://doi.org/10.1016/j.scitotenv.2022.153804.
- Upreti, M.R., Kayastha, S. and Bhuiyan, C. (2024) “Water quality, criticality, and sustainability of mountain springs – a case study from the Nepal Himalaya,” Environmental Monitoring and Assessment, 196, 57. Available at: https://doi.org/10.1007/s10661-023-12186-6.
- Zhang, F. et al. (2019) “Meltwater hydrochemistry at four glacial catchments in the headwater of Indus River,” Environmental Science and Pollution Research, 26, pp. 23645–23660. Available at: https://doi.org/10.1007/s11356-019-05422-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c34e05bf-e55e-4f7c-a151-e991f253b74e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.