PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving Crop Yield Predictions in Morocco Using Machine Learning Algorithms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In Morocco, agriculture is an important sector that contributes to the country’s economy and food security. Accurately predicting crop yields is crucial for farmers, policy makers, and other stakeholders to make informed decisions regarding resource allocation and food security. This paper investigates the potential of Machine Learning algorithms for improving the accuracy of crop yield predictions in Morocco. The study examines various factors that affect crop yields, including weather patterns, soil moisture levels, and rainfall, and how these factors can be incorporated into Machine Learning models. The performance of different algorithms, including Decision Trees, Random Forests, and Neural Networks, is evaluated and compared to traditional statistical models used for crop prediction. The study demonstrated that the Machine Learning algorithms outperformed the Statistical models in predicting crop yields. Specifically, the Machine Learning algorithms achieved mean squared error values between 0.10 and 0.23 and coefficient of determination values ranging from 0.78 to 0.90, while the Statistical models had mean squared error values ranging from 0.16 to 0.24 and coefficient of determination values ranging from 0.76 to 0.84. The Feed Forward Artificial Neural Network algorithm had the lowest mean squared error value (0.10) and the highest R² value (0.90), indicating that it performed the best among the three Machine Learning algorithms. These results suggest that Machine Learning algorithms can significantly improve the accuracy of crop yield predictions in Morocco, potentially leading to improved food security and optimized resource allocation for farmers.
Rocznik
Strony
392--400
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Laboratory of Engineering Sciences and Modeling, Faculty of Sciences, Ibn Tofail University, Campus Universitaire, BP 133, Av. de L'Université, Kenitra, Morocco
autor
  • Laboratory of Engineering Sciences and Modeling, Faculty of Sciences, Ibn Tofail University, Campus Universitaire, BP 133, Av. de L'Université, Kenitra, Morocco
autor
  • Laboratory of Engineering Sciences and Modeling, Faculty of Sciences, Ibn Tofail University, Campus Universitaire, BP 133, Av. de L'Université, Kenitra, Morocco
  • LyRICA – Laboratory of Research in Computer Science, Data Sciences and Knowledge Engineering, School of Information Sciences Rabat, Av. Allal Al Fassi, Rabat, Morocco
  • Laboratory of Engineering Sciences and Modeling, Faculty of Sciences, Ibn Tofail University, Campus Universitaire, BP 133, Av. de L'Université, Kenitra, Morocco
Bibliografia
  • 1. Agriculture 2030: what future morocco?. Moroccan High Commission for Planning. Retrieved from https://www.hcp.ma/file/231689.
  • 2. Van Klompenburg, T., Kassahun, A., Catal, C. 2020. Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 177, 105709.
  • 3. Li, Y., Guan, K., Yu, A., Peng, B., Zhao, L., Li, B., Peng, J. 2019. Toward building a transparent statistical model for improving crop yield prediction: Modeling rainfed corn in the U.S. Field Crops Research, 234, 55–65. https://doi.org/10.1016/j.fcr.2019.02.005.
  • 4. Michel, L., Makowski, D. 2013. Comparison of statistical models for analyzing wheat yield time series. PLoS One, 8(10), e78615.
  • 5. Crane-Droesch, A. 2018. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters, 13(11), 114003.
  • 6. Lobell, D.B., Burke, M.B. 2010. On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 150(11), 1443–1452.
  • 7. Galar, M., Fernández, A., Tartas, E.B., Bustince, H., Herrera, F. 2012. A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42, 463–484.
  • 8. Merenda, M., Porcaro, C., Iero, D. 2020. Edge Machine Learning for AI-Enabled IoT Devices: A Review. Sensors, 20(9), 253.
  • 9. Cao, J., Zhang, Z., Tao, F., Zhang, L., Luo, Y., Zhang, J., Han, J., Xie, J. 2021. Integrating Multi-Source Data for Rice Yield Prediction across China using Machine Learning and Deep Learning Approaches. Agricultural and Forest Meteorology, 297, 108275.
  • 10. Drummond, S.T., Sudduth, K.A., Joshi, A., Birrell, S.J., Kitchen, N.R. 2003. Statistical and neural methods for site–specific yield prediction. Transactions of the ASAE, 46(1), 5.
  • 11. Ruß, G., Kruse, R. 2009. Feature selection for wheat yield prediction. In Research and development in intelligent systems XXVI: Incorporating applications and innovations in intelligent systems XVII. London: Springer London, 465–478.
  • 12. Bocca, F.F., Rodrigues, L.H.A. 2016. The effect of tuning, feature engineering, and feature selection in data mining applied to rainfed sugarcane yield modelling. Computers and Electronics in Agriculture, 128, 67–76.
  • 13. Fortin, J.G., Anctil, F., Parent, L.É., Bolinder, M.A. 2011. Site-specific early season potato yield forecast by neural network in Eastern Canada. Precision Agriculture, 12, 905–923.
  • 14. Chlingaryan, A., Sukkarieh, S., Whelan, B. 2018. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 151, 61–69.
  • 15. Idrissi, A., Nadem, S., Boudhar, A., Benabdelouahab, T. 2022. Review of wheat yield estimating methods in Morocco. African Journal on Land Policy and Geospatial Sciences, 5(4), 818–831. https://doi.org/10.48346/IMIST.PRSM/ajlp-gs.v5i4.33050
  • 16. Office Régional de Mise en Valeur Agricole de Ouarzazate (ORMVAO). (n.d.). About Us. Retrieved from http://www.ormva-ouarzazate.ma/
  • 17. National Oceanic and Atmospheric Administration (NOAA). (n.d.). Climate Data Online (CDO) API. Retrieved from https://www.ncdc.noaa.gov/cdo-web/webservices/v2
  • 18. World Meteorological Organization (WMO). (n.d.). WMO Climate Data and Monitoring. Retrieved from https://public.wmo.int/en/our-mandate/climate/wmo-climate-data-and-monitoring
  • 19. Kotsiantis, S.B., Kanellopoulos, D.N. 2006. Association rules mining: A recent overview. GESTS International Transactions on Computer Science and Engineering, 32(1), 71–82.
  • 20. Nigam, A., Garg, S., Agrawal, A., Agrawal, P. 2019. Crop yield prediction using machine learning algorithms. In 2019 Fifth International Conference on Image Information Processing (ICIIP) IEEE, 125–130.
  • 21. Kamath, P., Patil, P.S., Sushma S., Sowmya, S. 2021. Crop yield forecasting using data mining. Global Transitions Proceedings, 2(2), 402–407.
  • 22. Li, H.B., Wang, W., Ding, H.W., Dong, J. 2010. Trees weighting random forest method for classifying high-dimensional noisy data. In 2010 IEEE 7th International Conference on E-Business Engineering (ICEBE), IEEE, 160–163.
  • 23. Dewangan, U., Talwekar, R.H., Bera, S. 2022. Systematic Literature Review on Crop Yield Prediction using Machine & Deep Learning Algorithm. In 2022 5th International Conference on Advances in Science and Technology (ICAST) Mumbai, India, 654–661.
  • 24. Dahikar, S.S., Rode, S.V. 2014. Agricultural crop yield prediction using artificial neural network approach. International journal of innovative research in electrical, electronics, instrumentation and control engineering, 2(1), 683–686.
  • 25. Brownlee, J. 2021. How to Prepare Data For Machine Learning. Retrieved from https://machinelearningmastery.com/how-to-prepare-data-for-machine-learning/
  • 26. Haque, F.F., Abdelgawad, A., Yanambaka, V.P., Yelamarthi, K. 2020. Crop Yield Analysis Using Machine Learning Algorithms. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT) IEEE, 1–2.
  • 27. Zaefizadeh, M., Khayatnezhad, M., Gholamin, R. 2011. Comparison of multiple linear regressions (MLR) and artificial neural network (ANN) in predicting the yield using its components in the hulless barley. American-Eurasian Journal of Agricultural & Environmental Science, 10(1), 60–64.
  • 28. Liu, L.W., Hsieh, S.H., Lin, S.J., Wang, Y.M., Lin, W.S. 2021. Rice blast (Magnaporthe oryzae) occurrence prediction and the key factor sensitivity analysis by machine learning. Agronomy, 11(4), 771.
  • 29. Evans, R.G., Sadler, E.J. 2008. Methods and technologies to improve efficiency of water use. Water Resources Research, 44(7), Jul.
  • 30. Fan, M., Shen, J., Yuan, L., Jiang, R., Chen, X., Davies, W.J., Zhang, F. 2012. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. Journal of Experimental Botany, 63(1), 13–24. https://doi.org/10.1093/jxb/err248
  • 31. Balaghi, R., Tychon, B., Eerens, H., Jlibene, M. 2008. Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco. International Journal of Applied Earth Observation and Geoinformation, 10(4), 438–452.
  • 32. Wang, K.H., Hooks, C.R. 2011. Managing soil health and soil health bioindicators through the use of cover crops and other sustainable practices. Chapter, 4, 1–18.
  • 33. Dhankher, O.P., Foyer, C.H. 2018. Climate resilient crops for improving global food security and safety. Plant, Cell & Environment, 41, 877–884. https://doi.org/10.1111/pce.13207
  • 34. Sharma, A., Jain, A., Gupta, P., Chowdary, V. 2020. Machine learning applications for precision agriculture: A comprehensive review. IEEE Access, 9, 4843–4873.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c34be35b-e7a7-4af4-bebf-557bffa55202
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.