PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the adaptive and neural network control for LWR 4+ manipulators: simulation study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with two control algorithms which utilize learning of their models’ parameters. An adaptive and artificial neural network control techniques are described and compared. Both control algorithms are implemented in MATLAB and Simulink environment, and they are used in the simulation of a postion control of the LWR 4+ manipulator subjected to unknown disturbances. The results, showing the better performance of the artificial neural network controller, are shown. Advantages and disadvantages of both controllers are discussed. The usefulness of the learning algorithms for the control of LWR 4+ robots is discussed. Preliminary experiments dealing with dynamic properties of the two LWR 4+ robots are reported.
Rocznik
Strony
111--121
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland.
Bibliografia
  • [1] J. Craig. Introduction to Robotics. Mechanics & Control. Addison-Wesley Publishing Company, 1986.
  • [2] R. Kelly, V.S. Davila, and A. Loría. Control of Robot Manipulators in Joint Space. Springer, London, 2005. doi: 10.1007/b135572.
  • [3] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control. John Wiley & Sons, 2006.
  • [4] F.W. Lewis, D.M. Dawson, and C.T. Abdallah. Robot Manipulator Control: Theory and Practice. CRC Press, 2003.
  • [5] J. Swevers, C. Ganseman, D.B.Tukel, J. de Schutter, and H. Van Brussel. Optimal robot excitation and identification. IEEE Transactions on Robotics and Automation, 13(5):730–740, 1997. doi: 10.1109/70.631234.
  • [6] J.Swevers, W. Verdonck, and J. de Schutter. Dynamic model identification for industrial robots. IEEE Control Systems Magazine, 27(5):58–71, 2007. doi: 10.1109/MCS.2007.904659.
  • [7] A. Liegeois, E. Dombre, and P. Borrel. Learning and control for a compliant computer-controlled manipulator. IEEE Transactions on Automatic Control, 25(6):1097–1102, 1980. doi: 10.1109/TAC.1980.1102513.
  • [8] A.J. Koivo and T.H. Guo. Control of robotic manipulator with adaptive controller. In 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, pages 271–276, San Diego, USA, 16–18 Dec. 1981. doi: 10.1109/CDC.1981.269527.
  • [9] C.S.G. Lee and M.J. Chung. An adaptive control strategy for computer-based manipulators. In 1982 21st IEEE Conference on Decision and Control, pages 95–100, Orlando, USA, 8–10 Dec. 1982. doi: 10.1109/CDC.1982.268407.
  • [10] A. Koivo and T.H. Guo. Adaptive linear controller for robotic manipulators. IEEE Transactions on Automatic Control, 28(2):162–171, 1983. doi: 10.1109/TAC.1983.1103211.
  • [11] J.-J.E. Slotine and W. Li. On the adaptive control of robot manipulators. The International Journal of Robotics Research, 6(3):49–59, 1987. doi: 10.1177/027836498700600303.
  • [12] F.W. Lewis, S. Jagannathan, and A. Yesildirak. Neural Network Control ff Robot Manipulators and Non-Linear Systems. Taylor & Francis, Inc, 1998.
  • [13] G. Dreyfus, G. Neural Networks. Methodology and Applications. Springer-Verlag, Berlin, Heidelberg, 2005. doi: 10.1007/3-540-28847-3.
  • [14] M.A. Johnson and M.B. Leahy. Adaptive model-based neural network control. IEEE International Conference on Robotics and Automation Proceedings, volume 3, pages 1704-1709, Cincinnati, USA, 13–18 May 1990. doi: 10.1109/ROBOT.1990.126255.
  • [15] M.B. Leahy, M A. Johnson, D.E. Bossert, and G.B. Lamont. Robust model-based neural network control. In 1990 IEEE International Conference on Systems Engineering, pages 343–346, Pittsburgh, USA, 9–11 Aug. 1990. doi: 10.1109/ICSYSE.1990.203167.
  • [16] R.T. Newton and Y. Xu. Neural network control of a space manipulator. IEEE Control Systems Magazine, 13(6):14–22, 1993. doi: 10.1109/37.247999.
  • [17] F.L. Lewis. Neural network control of robot manipulators. IEEE Expert, 11(3):64–75, 1996. doi: 10.1109/64.506755.
  • [18] F.L. Lewis, A. Yesildirek, and K. Liu. Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Transactions on Neural Networks, 7(2):388–399, 1996. doi: 10.1109/72.485674.
  • [19] A. Bottero, G. Gerio, V. Perna, and A. Gagliano. Adaptive control techniques and feed forward compensation of periodic disturbances in industrial manipulators. In 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), pages 1–7, Senigallia, Italy, 10–12 Sept. Sept. 2014. doi: 10.1109/MESA.2014.6935612.
  • [20] J. Li, H. Ma, C. Yang, and M. Fu. Discrete-time adaptive control of robot manipulator with payload uncertainties. In 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pages 1971–1976, Shenyang, China, 8–12 June 2015. doi: 10.1109/CYBER.2015.7288249.
  • [21] M. Li, Y. Li, S.S. Ge, and T.H. Lee. Adaptive control of robotic manipulators with unified motion constraints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(1):184–194, 2017. doi: 10.1109/TSMC.2016.2608969.
  • [22] Ł. Woliński. Implementation of the adaptive control algorithm for the KUKA LWR 4+rRobot. In J. Awrejcewicz, ed., Dynamical Systems in Theoretical Perspective, volume 248 of Springer Proceedings in Mathematics & Statistics, pages 391–401, Springer, Cham, 2018. doi: 10.1007/978-3-319-96598-7_31.
  • [23] M. de Paula Assis Fonseca, B.V. Adorno, and P. Fraisse. An adaptive controller with guarantee of better conditioning of the robot manipulator joint-space inertia matrix. In 2019 19th International Conference on Advanced Robotics (ICAR), pages 111–116, Belo Horizonte, Brazil, 2–6 Dec. 2019. doi: 10.1109/ICAR46387.2019.8981558.
  • [24] L. Zhang and L. Cheng. An adaptive neural network control method for robotic manipulators trajectory tracking. In 2019 Chinese Control And Decision Conference (CCDC), pages 4839–4844, Nanchang, China, 3–5 June 2019. doi: 10.1109/CCDC.2019.8832715.
  • [25] He Jun-Pei, Huo Qi, Li Yan-Hui, Wang Kai, Zhu Ming-Chao, and Xu Zhen-Bang. Neural network control of space manipulator based on dynamic model and disturbance observer. IEEE Access, 7:130101–130112, 2019. doi: 10.1109/ACCESS.2019.2937908.
  • [26] A. Nawrocka, M. Nawrocki, and A. Kot. Neural network control for robot manipulator. In 2019 20th International Carpathian Control Conference (ICCC), pages 1–4, Krakow-Wieliczka, Poland, 26–29 May 2019. doi: 10.1109/CarpathianCC.2019.8765995.
  • [27] Ł. Woliński and P. Malczyk. Dynamic modeling and analysis of a lightweight robotic manipulator in joint space. Archive of Mechanical Engineering, 62(2):279–302, 2015. doi: 10.1515/meceng-2015-0016.
  • [28] G. Rodriguez, A. Jain, and K. Kreutz-Delgado. A spatial operator algebra for manipulator modelling and control. International Journal of Robotics Research, 10(4):371–381, 1991. doi: 10.1177/027836499101000406.
  • [29] Lightweight Robot 4+ Specification, Version: Spez LBR 4+ V2en, 06.07.2010.
  • [30] A. Jubien, M. Gautier, and A. Janot. Dynamic identification of the Kuka lightweight robot: comparison between actual and confidential Kuka’s parameters. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics 2014, pages 483–488, Besancon, France, 8-11 July 2014. doi: 10.1109/AIM.2014.6878124.
  • [31] H. Kawasaki, T. Bito, and K. Kanzaki. An efficient algorithm for the model-based adaptive control of robotic manipulators. IEEE Transactions on Robotics and Automation, 12(3):496–501, 1996. doi: 10.1109/70.499832.
  • [32] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics. Modelling, Planning and Control. Springer-Verlag, London, 2009. doi: 10.1007/978-1-84628-642-1.
  • [33] M. Gautier and W. Khalil. Direct calculation of minimum set of inertial parameters of serial robots. IEEE Transactions on Robotics and Automation, 6(3):368-373, 1990. doi: 10.1109/70.56655.
  • [34] Ł. Woliński and M. Wojtyra. Comparison of dynamic properties of two KUKA lightweight robots. In ROMANSY 21 – Robot Design, Dynamics and Control. Proceedings of the 21st CISMIFToMM Symposium, volume 569, pages 413–420, 2016. doi: 10.1007/978-3-319-33714-2_46.
  • [35] V. Záda and K. Belda. Mathematical modeling of industrial robots based on Hamiltonian mechanics. In 2016 17th International Carpathian Control Conference (ICCC), pages 813–818, 2016. doi: 10.1109/CarpathianCC.2016.7501208.
  • [36] V. Záda and K. Belda. Application of Hamiltonian mechanics to control design for industrial robotic manipulators. In 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pages 390–395, Miedzyzdroje, Poland, 28–31 Aug. 2017. doi: 10.1109/MMAR.2017.8046859.
  • [37] K. Chadaj, P. Malczyk, and J. Frączek. A parallel recursive hamiltonian algorithm for forward dynamics of serial kinematic chains. IEEE Transactions on Robotics, 33(3):647–660, 2017. doi: 10.1109/TRO.2017.2654507.
  • [38] G. Schreiber, A. Stemmer, and R. Bischoff. The fast research interface for the KUKA lightweight robot. In Proceedings of the IEEE ICRA 2010 Workshop on ICRA 2010 Workshop on Innovative Robot Control Architectures for Demanding (Research) Applications – How to Modify and Enhance Commercial Controllers, pages 15–21, May 2010.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c344c078-87c9-4c62-a570-aeef0cd13d72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.