PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tribological Tests of Materials for Hip Joint Endoprosthesis Cups

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania tribologiczne materiałów na panewki endoprotez stawu biodrowego
Języki publikacji
EN
Abstrakty
EN
Hip joint alloplasty completely changes the cooperation conditions of the correct biological friction pair by introducing a cup and a head on a stem. When selecting an endoprosthesis, a choice should be made between a rigid tribological node and a flexible biobearing that absorbs locomotion loads, which better approximates the conditions in a normal joint. The aim of the study is to compare and evaluate the tribological and micromechanical parameters of selected biomaterials used for hip joint endoprosthesis cups. The conducted tests of wear resistance and determination of coefficients of friction, as well as microhardness and Young’s modulus tests, allowed us to determine which materials will be preferred for hip joint endoprosthesis cups. Based on the results of the tribological tests performed, the authors identify the most favorable tribological pair in the context of wear and coefficient of friction. Improving the tribological cooperation of the bearing pair used, reducing wear and generation of friction products in particular, may influence the articulation conditions of the endoprosthesis and the length of its survival in the body.
PL
Alloplastyka stawu biodrowego w sposób całkowity zmienia warunki współpracy prawidłowej biologicznej pary trącej poprzez wprowadzenie panewki oraz głowy na trzpieniu. Dobierając endoprotezę należy dokonać wyboru pomiędzy sztywnym węzłem tribologicznym a biołożyskiem podatnym, amortyzującym obciążenia lokomocyjne, które lepiej przybliża warunki panujące w prawidłowym stawie. Celem pracy jest porównanie i ocena parametrów tribologicznych i mikromechanicznych wybranych biomateriałów stosowanych na panewki endoprotez stawu biodrowego. Przeprowadzone badania odporności na zużycie oraz wyznaczenie współczynników tarcia, a także badania mikrotwardości i modułu Younga pozwoliły stwierdzić, które materiały będą najbardziej odpowiednie na panewki endoprotez stawu biodrowego. Badania tribologiczne pozwoliły na wyznaczenie najkorzystniejszej pary tribologicznej w kontekście zużycia i współczynnika tarcia. Poprawa tribologicznej współpracy zastosowanej pary łożyskowej, a szczególnie obniżenie zużycia i zmniejszenie generowania produktów tarcia może wpływać na warunki artykulacji endoprotezy i długość jej przeżycia w organizmie.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
7--22
Opis fizyczny
Bibliogr. 40 poz., fot., rys., tab., wykr.
Twórcy
  • AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Mickiewicza 30 Ave., 30-059 Krakow, Poland
  • AGH University of Krakow, Faculty of Non-Ferrous Metals, Mickiewicza 30 Ave., 30-059 Krakow, Poland
autor
  • AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Mickiewicza 30 Ave., 30-059 Krakow, Poland
  • AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Mickiewicza 30 Ave., 30-059 Krakow, Poland
Bibliografia
  • 1. Shekhawat D., Singh A., Patnaik A.: Tribo-behaviour of biomaterials for hip arthroplasty. Materials Today: Proceedings, 44(6), 2021, pp. 4809–4815.
  • 2. Ryniewicz A.M., Bojko Ł., Madej T., Ryniewicz A.: A Biometrological Procedure Preceeding the Resurfacing. Metrology and Measurement Systems, 23(1), 2016, pp. 97–106.
  • 3. Ryniewicz A., Ryniewicz A.M., Madej T., Sładek J., Gąska A.: Biometrological method of pelvis measurement and anatomical positioning of endoprosthesis of hip joint. Metrology and Measurement Systems, 20(1), 2013, pp. 17–26.
  • 4. Affatato S., Ruggiero A., Merola M.: Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings. Compos B Eng. 83, 2015, pp. 276–283.
  • 5. Szarek A., Postawa P., Stachowiak T., Paszta P., Redutko J., Mordal K., Kalwik A., ŁukomskaSzarek J., Gzik M., Joszko K., Rydz D., Łągiewka M., Gzik-Zroska B.: The Analysis of Polyethylene Hip Joint Endoprostheses Strength Parameters Changes after Use inside the Human Body. Materials, 14(22),2021, p. 7091.
  • 6. Khalifa A.A., Bakr H.M.: Updates in biomaterials of bearing surfaces in total hip arthroplasty. Arthroplasty, 3(1), 2021, p. 32.
  • 7. Khan P.D., Khahro S.H.: Advancement in biomedical implant materials-A mini Review. Frontiers in Bioengineering and Biotechnology, 12, 2024, p. 1400918.
  • 8. Goswami C., Patnaik A., Bhat I.K., Singh T.: Mechanical physical and wear properties of some oxide ceramics for hip joint application: A short review. Materials Today: Proceedings, 44(6), 2021, pp. 4913–4918.
  • 9. Liu F., He Y., Gao Z., Jiao D.: Enhanced computational modelling of UHMWPE wear in total hip joint replacements: The role of frictional work and contact pressure. Wear, 482–483, 2021, p. 203985.
  • 10. Nayak S.K., Hirwani J.K., Sinha S.K., Pandey R.K.: Mechanical and bio-tribological behaviours of UHMWPE based composites for prosthetic hip joint implant application. Tribology International, 199, 2024, p. 109945.
  • 11. Nabrdalik M., Sobociński M.: Overload stress and its influence on durability of ceramic elements in hip and knee joints endoprostheses. Archives of Metallurgy and Materials, 67(2), 2022, pp. 729–734.
  • 12. Shankar S., Nithyaprakash R., Sugunesh A.P., Selvamani K.A., Uddin M.S.: Experimental and finite element wear study of silicon nitride against alumina for hip implants with bio-lubricant for various gait activities. Silicon, 13, 2021, pp. 633–644.
  • 13. Goswami C., Bhat I.K., Bathula S., Singh T., Patnaik A.: Physico-mechanical and surface wear assessment of magnesium oxide filled ceramic composites for hip implant application. Silicon, 11 2019, pp. 39–49.
  • 14. Goswami C., Bhat I.K., Patnaik A., Singh T., Fekete G.: Fabrication of ceramic hip implant composites: influence of silicon nitride on physical, mechanical and wear properties. Silicon, 12, 2020, pp. 1237– 1245.
  • 15. Shekhawat D., Singh A., Banerjee M.K., Singh T., Patnaik A.: Bioceramic composites for orthopaedic applications: A comprehensive review of mechanical, biological, and microstructural properties. Ceramics International, 47(3), 2021, pp. 3013–3030.
  • 16. Abitha H., Kavitha V., Gomathi B., Ramachandran B.: A recent investigation on shape memory alloys and polymers based materials on bio artificial implants-hip and knee joint. Materials Today: Proceedings, 33(7), 2020, pp. 4458–4466.
  • 17. Kaliaraj G.S., Kumar D.D., Kirubaharan A.K.: Bioactive Coatings for Biomedical Applications. Tribology and Characterization of Surface Coatings, 2022, pp. 159–179.
  • 18. Aherwar A., Singh A., Patnaik A., Unune D.: Selection of molybdenum-filled hip implant material using grey relational analysis method. In: Handbook of research on emergent applications of optimization algorithms. IGI Global. 2018, pp. 675–692.
  • 19. Aherwar A., Patnaik A., Bahraminasab M., Singh A.: Preliminary evaluations on development of new materials for hip joint femoral head. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), 2019, pp. 885–899.
  • 20. Heidari B.S., Davachi S.M., Moghaddam A.H., Seyfi J., Hejazi I., Sahraeian R., Rashedi H.: Optimization simulated injection molding process for ultrahigh molecular weight polyethylene nanocomposite hip liner using response surface methodology and simulation of mechanical behavior. Journal of the mechanical behavior of biomedical materials, 81, 2018, pp. 95–105.
  • 21. Ren Y.: Biomaterials and Coatings for Artificial Hip Joints. In Biomaterials and Materials for Medicine CRC Press. 2021, pp. 105–143.
  • 22. Choudhari A., Gupta A.K., Kumar A., Kumar A., Gupta A., Chowdhury N., Kumar A.: Wear and Friction Mechanism Study in Knee and Hip Rehabilitation: A Comprehensive Review. Applications of Biotribology in Biomedical Systems, 2024, pp. 345–432.
  • 23. Sathishkumar S., Paulraj J., Chakraborti P., Muthuraj M.: Comprehensive Review on Biomaterials and Their Inherent Behaviors for Hip Repair Applications. ACS Applied Bio Materials, 6(11), 2023, pp. 4439–4464.
  • 24. Chethan K.N., Bhat N.S., Zuber M., Shenoy B.S., Jin Z.: Evolution of different designs and wear studies in total hip prosthesis using finite element analysis: A review. Cogent Engineering, 9(1), 2022, p. 2027081.
  • 25. Su J., Wang J.J., Yan S.T., Zhang M., Wang H.Z., Zhang N.Z., Luan Y.C., Cheng C.K.: In vitro analysis of wearing of hip joint prostheses composed of different contact materials. Materials, 14(14), 2021, p. 3805.
  • 26. Hu C.Y., Yoon T.R.: Recent updates for biomaterials used in total hip arthroplasty. Biomater Res., 22(1), 2018, p. 33.
  • 27. Affatato S., Jaber S.A., Taddei P.: Ceramics for Hip Joint Replacement. In: Zivic F., Affatato S., Trajanovic M., Schnabelrauch M., Grujovic N., Choy K. (eds), Biomaterials in Clinical Practice. Cham, Springer, 2018.
  • 28. Bhaskar B., Arun S., Sreekanth P., Kanagaraj S.: Biomaterials in total hip joint replacements: the evolution of basic concepts, trends, and current limitations – a review. Trends Biomater., 5, 2016, pp. 175–199.
  • 29. Higgins J.E., Conn K.S., Britton J.M., Pesola M., Manninen M., Stranks G.J.: Early results of our international, multicenter, multisurgeon, doubleblinded, prospective, randomized, controlled trial comparing metal-on-metal with ceramic-on-metal in total hip arthroplasty. J Arthroplasty, 35(1), 2020, pp. 193–197.
  • 30. Ryniewicz A., Madej T., Ryniewicz W., Bojko Ł., Choromański M.: The effect of the coefficient of friction on the biomechanics of contact in hip endoprosthesis. Tribologia, 273(3), 2017, pp. 137–146.
  • 31. Uklejewski R., Winiecki M., Dąbrowski M., Rogala P.: Towards the First Generation of Biomimetic Fixation for Resurfacing Arthroplasty Endoprostheses. Biomimetics, 9(2), 2024, p. 99.
  • 32. Karthik B.D., Panneerselvam D., Sharma H., Srinivasan N.R., Vaishnavi J.C., Michael T.C., Jebaseelan D.D.: Finite element analysis of endoprosthesis cup with porous titanium. Materials Today: Proceedings. 2023.
  • 33. Phedy P., Ismail H.D., Hoo C., Djaja Y.P.: Total hip replacement: A meta-analysis to evaluate survival of cemented, cementless and hybrid implants. World journal of orthopedics, 8(2), 2017, pp. 192–207.
  • 34. Khanna R., Kokubo T., Matsushita T., Takadama H.: Fabrication of dense α-alumina layer on Ti-6Al4V alloy hybrid for bearing surfaces of artificial hip joint. Materials Science and Engineering: C, 69, 2016, pp. 1229–1239.
  • 35. Dąbrowski R., Pacyna J., Kochańczyk J.: The formation of microstructure of and fracture toughness of Ti-6Al-7Nb alloy for biomedical applications. Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna, 22(3), 2016, pp. 130–137.
  • 36. Ozimina D., Kowalczyk J., Madej M.: The impact of biodegradable cutting fluid on the tribological properties of the friction pairs. Tribologia, 1, 2016, pp. 67–78.
  • 37. Hua Z., Yan X., Liu D., Jin Z., Wang X., Liu L.: Analysis of the friction-induced squeaking of ceramicon-ceramic hip prostheses using a pelvic bone finite element model. Tribology Letters, 61(3), 2016, pp. 1–7.
  • 38. Ruggiero A., Gómez E., Merola M.: Experimental comparison on tribological pairs UHMWPE/ TIAL6V4 alloy, UHMWPE/AISI316L austenitic stainless and UHMWPE/AL2O3 ceramic, under dry and lubricated conditions. Tribology International, 96, 2016, pp. 349–360.
  • 39. Nam J., Choi H., Kang J.: Finite element analysis for friction noise of simplified hip joint and its experimental validation. Journal of Mechanical Science and Technology, 30(8), 2016, pp. 3453–3460.
  • 40. Czerniec M., Zubrzycki J.: Study of contact pressures in total hip replacement. Advances in Science and Technology. Research Journal, 15(2), 2021, pp. 176–183.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3439826-ce13-43e3-bdbf-89bfcab2c77d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.