PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite elements analysis of the side grooved I-beam specimen for mode II fatigue crack growth rates determination

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Carefully investigate the stress-strain state of the side grooved I-beam specimen with edge crack and determine the effect of crack length and crack faces friction on stress intensity factor at transverse shear. Design/methodology/approach: The finite element method was used to estimate the stress-strain state of I-beam specimen at transverse shear. For this purpose, a fullscale, three-dimensional model of the specimen was created, which precisely reproduces its geometry and fatigue crack faces contact. For the correct reproduction of the stress singularity at the crack tip, a special sub-model was used, which has been tested earlier in solving similar problems of fracture mechanics. In order to improve the accuracy of the calculations, for crack plane and cross-section of the specimen on the crack extension modeling, an algorithm for changing the crack length without changing the total number of elements in the model was developed and applied. Young's modulus and Poisson's ratio of structural steels were specified for the model material. The static loading of the model was realized assuming small scale yielding condition. The stress intensity factor was found through the displacement of nodes in the prismatic elements adjacent to the plane and the front of the crack. Findings: Mathematical dependences, which show an increase of stress intensity factor in the I-beam specimen with an increase in the crack length, and its decrease with an increase of crack faces friction factor at transverse shear, were established. The results are compared with the partial cases known from the literature and their good convergence was shown. Research limitations/implications: By analyzing the obtained graphical dependences, it is established that for relative crack lengths less than 0.4 there is a significant influence of the initial notch on the stress-strain state of the specimen, and for the lengths greater than 0.9 an influence of constrained gripping part took place. For this reason, all subsequent calculations were carried out in the range of relative crack length from 0.4 to 0.9, which represents the applicability range of the final calculation formula. Increasing of the crack faces friction factor from 0 to 1 monotonically reduces the stress at the crack tip. For a short crack, this effect is 1.5 times greater than for a long one, which is reflected by the calculation formula. Practical implications: Using the proposed calculation formula, one can calculate the stress intensity factor in the I-beam specimen, and to determine the crack growth resistance characteristics of structural steels at transverse shear. Originality/value: A new, easy-to-use in engineering calculations formula is proposed for stress intensity factor determination in the I-beam specimen at transverse shear. The formula takes into account crack faces friction for various crack lengths.
Rocznik
Strony
70--77
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5 Naukova St., Lviv 79060, Ukraine
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • The John Paul II Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
Bibliografia
  • [1] K. Cvetkovski, J. Ahlstrom, M. Norell, C. Persson. Analysis of wear debris in rolling contact fatigue cracks of pearlitic railway wheels, Wear 314/1-2 (2014) 51-56, doi: https://doi.org/10.1016/j.wear.2013.11.049.
  • [2] O.P. Ostash, V.H. Anofriev, I.M. Andreiko, L.A. Muradyan, Kulyk V.V. On the concept of selection of steels for high-strength railroad wheels, Materials Science 48/6 (2013) 697-703, doi: https://doi.org/10.1007/s11003-013-9557-7.
  • [3] O.P. Datsyshyn, V.V. Panasyuk, Methods for the Evaluationof the Contact Durability of Elements of the Tribojonts (A Survey), Materials Science 52/4 (2017) 447-459, doi: https://doi.org/10.1007/s11003-017-9977-x.
  • [4] A.K. Hellier, K. Zarrabi, A.A. Merati, On thr mode II fatigue threshold for mild steel, International Journal of Fracture 167/2 (2011) 267-272, doi: https://doi.org/10.1007/s10704-010-9540-3.
  • [5] M.O. Wang, R.H. Hu, C.F. Qian, J.C.M. Li, Fatigue crack growth under mode II loading, Fatigue & Fracture of Engineering Materials & Structures 18/12 (1995) 1443-1454, doi: https://doi.org/10.1111/j.1460-2695.1995.tb00867.x
  • [6] Y. Murakami, S. Hamada, A new method for measurement of mode II fatigue threshold stress intensity factor range ΔΚτth, Fatigue & Fracture of Engineering Materials & Structures 20/6 (1997) 863-870, doi: https://doi.org/10.1111/j.1460-2695.1997.tb01530.x.
  • [7] C. Pinna, V. Doquet, The preferred fatigue crack propagation mode in M250 maraging steel loaded in shear, Fatigue & Fracture of Engineering Materials & Structures 22/3 (1999) 173-183, doi: https://doi.org/10.1046/j.1460-2695.1999.00161.x
  • [8] A. Otsuka, Y. Fujii, K. Maeda, A new testing metod to obtain mode II fatigue crack growth characteristics of hard materials, Fatigue & Fracture of Engineering Materials & Structures 27/3 (2004) 203-212, doi: https://doi.org/10.1111/j.1460-2695.2004.00747.x.
  • [9] M. Liu, S. Hamada, Measurement of effective stress intensity factor range of mode II fatigue crack propagation, Procedia Engineering 10 (2011) 1949-1954, doi: https://doi.org/10.1016/j.proeng.2011.04.323.
  • [10] H. Matsunaga, N. Shomura, S. Muramato, M. Endo, Shear mode threshold for a small fatigue crack in a bearing steel, Fatigue & Fracture of Engineering Materials & Structures 34/1 (2011) 72-82, doi: https://doi.org/10.1111/j.1460-2695.2010.01495.x.
  • [11] V. Doquet, Q.H. Bui, G. Bertolino, E. Merhy, L. Alves, 3D shear-mode fatigue crack growth in maraging steel and Ti-6Al-4V, International Journal of Fracture 165/ (2010) 61-76, doi: https://doi.org/10.1007/s10704-010-9504-7.
  • [12] G.V. Tsybanev, P.Y. Kravets, A.O. Khotsyanovskii, A method of testing for crack resistance under a cyclic shearing load, Strength of Materials 24/1 (1992) 97-103, doi: https://doi.org/10.1007/BF00777234.
  • [13] S. Okazaki, K. Wada, H. Matsunaga, M. Endo, The influence of static crack-opening stress on the threshold level for shear-mode fatigue crack growth in bearing steels, Engineering Fracture Mechanics 174 (2017) 127-138, doi: https://doi.org/10.1016/j.engfracmech.2016.12.007.
  • [14] H. Nishizawa, T. Ogawa, A mode II fatigue crack growth characteristics and experimental evaluation of the crack driving force, Journal of the Society of Materials Science 54/12 (2005) 1295-1300, doi: https://doi.org/10.2472/jsms.54.1295.
  • [15] T.M. Lenkovs’kyi, Determination of the characteristics of cyclic resistance of steels under transverse shear (a survey), Materials Science 50/3 (2014) 340-349, doi: https://doi.org/10.1007/s1103-014-9725-4.
  • [16] Ya.L. Ivanyts’kyi, T.M. Lenkovs’kyi, V.M. Boiko, S.T. Shtayura, Methods for the construction of the kinetic diagrams of fatigue fracture for steels under the conditions of transverse shear with regard for the friction of crack lips, Materials Science 49/6 (2014) 749-754, doi: https://doi.org/10.1007/s1103-014-9670-2.
  • [17] Y.L. Ivanytskyj, T.M. Lenkovskiy, Y.V. Molkov, V.V. Kulyk, Z.A. Duriagina, Influence of 65G steel microstructure on crack faces friction factory under mode II fatigue fracture, Archives of Materials Science and Engineering 82/2 (2016) 49-56, doi: https://doi.org/10.5604/01.3001.0009.7103.
  • [18] V.V. Kulyk, T.M. Lenkovs’kyi, O.P. Ostash, Mode I and Mode II Cyclic Crsck Resistance of Wheel Steel, Strength of Materials 49/2 (2017) 256-262, doi: https://doi.org/10.1007/s11223-017-9865-5.
  • [19] T.M. Lenkovskiy, V.V. Kulyk, Z.A. Duriagina, R.A. Kovalchuk, V.G. Topilnytskyy, V.V. Vira, T.L. Tepla, O.V. Bilash, K.I. Lishchynska, An effective crack tip region finite element submodel for fracture mechanics analysis, Archives of Materials Science and Engineering 87/2 (2017) 56-65, doi: https://doi.org/10.5604/01.3001.0010.7446.
  • [20] P.S. Kun, S.T. Shtayura, T.M. Lenkovs’kyi, Determination of the Stress Intensity Factor for a Transverse Shear Crack in a Beam Specimen, Materials Science 50/2 (2014) 212-216, doi: https://doi.org/10.1007/s11003-014-9710-y.
  • [21] A. Dorogoy, L. Banks-Sills, Effect of crack face contact and friction on Brazilian disk specimens – A finite difference solution, Engineering Fracture Mechanics 72/18 (2005) 2758-2773, doi: https://doi.org/10.1016/j.engfracmech.2005.05.005.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3437ec9-e1d2-4b0c-b6fd-f0271aee42f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.