PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physical and numerical model of electrocoagulation process with aluminum electrodes for phosphate removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The efficiency of the electrocoagulation process for the removal of phosphate ions (PO43--P) has been analyzed using a batch full-scale reactor with aluminum electrodes. The effects of the flow rate through the reactor applied current density, and reactor volume were the focus of the study. The initial (PO43--P) concentration was reduced by 90% after 90 min of reactor operation time. Additionally, a three-dimensional numerical model for PO43--P removal via the electrocoagulation process is developed that includes the processes of phosphate adsorption and desorption on coagulated/flocculated particles, along with particles settling. Numerical model parametrization relies on the results from the experiments.
Rocznik
Strony
53--68
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • University of Zagreb, Faculty of Civil Engineering, Fra Andrije Kacica-Miosica 26, 10 000 Zagreb, Croatia
autor
  • University of Zagreb, Faculty of Civil Engineering, Fra Andrije Kacica-Miosica 26, 10 000 Zagreb, Croatia
  • University of Zagreb, Faculty of Civil Engineering, Fra Andrije Kacica-Miosica 26, 10 000 Zagreb, Croatia
autor
  • University of Zagreb, Faculty of Civil Engineering, Fra Andrije Kacica-Miosica 26, 10 000 Zagreb, Croatia
Bibliografia
  • [1] SINCERO G.A., Physical-chemical Treatment of Water and Wastewater, CRC Press, Boca Raton, Florida, 2003.
  • [2] European Commission, Council directive 91/271/EEC of 21 May 1991 concerning urban waste-water treatment, Off. J. Eur. Union, L135, 1991, 40–52.
  • [3] TCHOBANOGLOUS G., BURTON F.L., Wastewater engineering: treatment, disposal, reuse, McGraw-Hill, 1991.
  • [4] GRUBB D.G., GUIMARAES M.S., VALENCIA R., Phosphate immobilization using an acidic type F fly ash, J. Hazard. Mater., 2000, 76, 217–236. DOI: 10.1016/S0304-3894(00)00200-4.
  • [5] YILDIZ E., Phosphate removal from water by fly ash using crossflow microfiltration, Sep. Purif. Technol., 2004, 35, 241–252. DOI: 10.1016/S1383-5866(03)00145-X.
  • [6] IRDEMEZ S., YILDIZ Y.S., TOSUNOGLU V., Optimization of phosphate removal from wastewater by electrocoagulation with aluminum plate electrodes, Sep. Purif. Technol., 2006, 52, 394–401. DOI: 10.1016/j.seppur.2006.05.020.
  • [7] HAKIZIMANA J.N., GOURICH B., CHAFI M., STIRIBA Y., VIAL C., DROGUI P., NAJA J., Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches, Desal., 2017, 404, 1–21. DOI: 10.1016/j.desal.2016.10.011.
  • [8] MOLLAH M.Y.A., SCHENNACH R., PARGA J.R., COCKE D.L., Electrocoagulation (EC) – science and application, J. Hazard. Mater. B, 2001, 84, 29–41. DOI: 10.1016/S0304-3894(01)00176-5.
  • [9] IRDEMEZ S., DEMIRCIOGLU N., YILDIZ Y.S., BINGUL Z., The effects of current density and phosphate concentration on phosphate removal from wastewater by electrocoagulation using aluminum and iron plate electrodes, Sep. Purif. Technol., 2006, 52, 218–223. DOI: 10.1016/j.seppur.2006.04.008.
  • [10] CHEN X., CHEN G.C., YUE P.L., Separation of pollutants from restaurant wastewater by electrocoagulation, Sep. Purif. Technol., 2000, 19, 65–76. DOI: 10.1016/S1383-5866(99)00072-6.
  • [11] ECKENFELDER Jr. W.W., Industrial Water Pollution Control, 2nd Ed., McGraw-Hill, 1989.
  • [12] KABDASLI I., ARSLAN-ALATON I., OLMEZ-HANCI T., TUNAY O., Electrocoagulation applications for industrial wastewaters. A critical review, Environ. Technol. Rev., 2012, 1 (1), 2–45. DOI: 10.1080/21622515.2012.715390.
  • [13] KOBYA M., CAN O.T., BAYRAMOGLU M., Treatment of textile wastewater by electrocoagulation using iron and aluminum electrodes, J. Hazard. Mater., 2003, 16–178. DOI: 10.1016/S0304-3894(03)00102-X.
  • [14] PIZZI N.G., Water Treatment Operator Handbook, American Water Works Association, 2011.
  • [15] WEBER W.J., Physicochemical Processes for Water Quality Control, John Wiley, 1972.
  • [16] FERZIGER J.H., Simulation of incompressible turbulent flows, J. Comp. Phys., 1987, 69 (1), 1–48. DOI: 10.1016/0021-9991(87)90154-9.
  • [17] RASMUSSEN E.B., Three-dimensional hydrodynamic models, [In:] M.B. Abbott, N.A. Price, (Eds.), Coastal, Estuarial and Harbour Engineer’s Reference Book, Chapman and Hall, London 1993, 109–116.
  • [18] CASULLI V., A semi-implicit finite difference method for non-hydrostatic, free-surface flows, Int. J. Num. Meth. Fluids, 1999, 30, 425–440. DOI: 10.1002/(SICI)1097-0363(19990630)30:4<425::AIDFLD847> 3.0.CO;2-D.
  • [19] ABBOTT M.B., BASCO D.R., Computational Fluid Dynamics, an Introduction for Engineers, Longman Scientific and Technical, 1989.
  • [20] RICHTMEYER R.D., MORTON K.W., Difference Methods for Initial-Value Problems, Krieger Publishing Company, 1994.
  • [21] VESTED H.J., JUSTESEN P., EKEBJÆRG L., Advection-dispersion modelling in three dimensions, Appl. Math. Modell., 1992, 16 (10), 506–519. DOI: 10.1016/0307-904X(92)90001-J.
  • [22] GROSS E.S., BONAVENTURA L., ROSATTI G., Consistency with continuity in conservative advective schemes for free surface models, Int. J. Numer. Meth. Fluids, 2002, 38, 307–327. DOI: 10.1002/fld.222.
  • [23] RODI W., Turbulence Models and Their Application in Hydraulics. A State of the Art Review, IAHR Monographs, CRC Press, 1993.
  • [24] SMAGORINSKY J., Some historical remarks on the use of nonlinear viscosities, [In:] B. Galperin, S. Orszag (Eds.), Large Eddy Simulations of Complex Engineering and Geophysical Flows, Cambridge University Press, 1993, 3–36.
  • [25] LAI C.L., LIN S.H., Treatment of chemical mechanical polishing wastewater by electrocoagulation: system performances and sludge settling characteristics, Chemosphere, 2004, 54, 235–24.2. DOI: 10.1016/j. chemosphere.2003.08.014.
  • [26] Pedrollo, General Catalogue 2005, 16–19. Accessed: September 20, 2019, http://www.tekhar.com/Programma/Pedrollo/C2002UK.pdf
  • [27] GOEHRING L.D., STEENHUIS T.S., BROOKS A., ROSENWALD M.N., CHEN J., PUTNAM V.J., Cost-Effective Phosphorus Removal from Secondary through Mineral Adsorption, Technical Report No. 36, Cornell University, Essex County Planning Department for Lake Champlain Basin Program, 1999.
  • [28] BASHAR R., GUNGOR K., KARTHIKEYAN K.G., BARAK P., Cost effectiveness of phosphorus removal processes in municipal wastewater treatment, Chemosphere, 2018, 197, 280–290. DOI: 10.1016/j.chemo sphere.2017.12.169.
  • [29] DUNNE E.J., COVENEY M., HOGE V., CONROW R., NALEWAY R., LOWE E., BATTOE L., WANG Y., Phosphorus removal performance of a large-scale constructed treatment wetland receiving eutrophic lake water, Ecol. Eng., 2015, 79. DOI: 10.1016/j.ecoleng.2015.02.003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c33ec139-2bcb-436c-b9fd-4ac80f18829f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.