PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania FTIR-ATR i fluorescencyjne układów białkowo-lipidowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
FTIR-ATR and fluorescence studies of protein-lipid systems
Języki publikacji
PL
Abstrakty
EN
Lipid-protein systems paly curtail roles in living systems [49]. Hence, a determination of their structure at different levels of organization is still one of the most important tasks in many research projects. A study of lipid-protein systems is based on many physicochemical techniques, such as spectroscopy of FTIR, Raman, fluorescence, NMR, EPR, as well as DLS, DSC and TEM methods. In the presented paper tow of the most frequently used methods, that is FTIR and fluorescence spectroscopy, will be discussed in details. They are characterized by a relatively low cost of sample preparation, a short measuring time, and they give a huge number of structural and physicochemical information about lipid-protein systems. In the FTIR-ATR spectroscopy many of vibrational bands are commonly used as very precise vibrational indicators of structural changes in lipids and proteins (Fig. 1) [1–6]. They allows to characterize lipid and protein components separately in mixed systems. Additionally, structural changes in lipid membranes can be monitored in one FTIR-ATR experiment simultaneously in a region of hydrophilic lipid head-groups (Fig. 5) [17, 18], in a hydrophobic part composed of hydrocarbon lipid chains (see Figures 2 and 3) [7–9], and in a lipid membrane interface represented by ester lipid groups (Fig. 4) [4, 6, 11, 12]. A secondary structure of proteins and peptides in different experimental conditions can be defined in the FTIR-ATR spectroscopy on the base of amide I bands (Fig. 6 and Tabs 1, 2 and 3) [20–22]. A fluorescence spectroscopy is a complementary methods to FTIR spectroscopy in a study of lipid-protein systems. It competes information about time-dependent and very fast (in a scale of femtoseconds) structural processes in both lipids [41–45] and proteins [23, 27, 48]. The folding, denaturation, and aggregation of proteins and lipid membranes accompanied by changes in an order, packing and hydration of the system under study [23, 27, 41–45, 48].
Rocznik
Strony
109--132
Opis fizyczny
Bibliogr. 49 poz., tab., wykr.
Twórcy
  • Uniwersytet Wrocławski, Wydział Chemii, ul. F. Joliot-Curie 14,50-383 Wrocław
  • Uniwersytet Wrocławski, Wydział Chemii, ul. F. Joliot-Curie 14,50-383 Wrocław
autor
  • Uniwersytet Wrocławski, Wydział Chemii, ul. F. Joliot-Curie 14,50-383 Wrocław
Bibliografia
  • [1] H. Fabian, C.P. Schultz, Fourier transform infrared spectroscopy of peptide and protein analysis [w:] Encyclopedia of Analytical Chemistry, R.A. Meyers (Red.), John Wiley & Sons, Inc, 2001.
  • [2] L.K. Tamm, S.A. Tatulian, Q. Rev. Biophys., 1997, 30, 365.
  • [3] K.A. Oberg, A.L. Fink, Anal. Biochem., 1998, 256, 92.
  • [4] J.L.R. Arrondo, F.M. Goni, Chem Phys Lipids, 1998, 96, 53.
  • [5] E. Goormaghtigh, V. Raussens, J.-M. Ruysschaert, Biochim Biophys Acta, 1999, 1422, 105.
  • [6] H.L. Casal, H.H. Mantsch, Biochim. Biophys. Acta, 1984, 779, 381.
  • [7] X. Bin, I. Zawisza, J.D. Goddard, J. Lipkowski, Langmuir, 2005, 21, 330.
  • [8] R.N.A.H. Lewis, R.N. McElhaney, Biochim. Biophys. Acta, 2013, 1828, 2347.
  • [9] T. Le Bihan, M. Pezolet, Chem. Phys. Lipids, 1998, 94, 13.
  • [10] P. Garidel, A. Blume, W. Hubner, Biochim. Biophys. Acta, 2000, 1466, 245.
  • [11] W. Hubner, H.H. Mantsch, Biophys. J., 1991, 59, 1261.
  • [12] J. Grdadolnik, J. Kidrič, D. Hadži, Chem. Phys. Lipids, 1991, 59, 57.
  • [13] A. Blume, W. Hubner, G. Messner, Biochemistry, 1988, 27, 8239.
  • [14] R.N.A.H. Lewis, R.N. McElhaney, W. Pohle, H.H. Mantsch, Biophys. J., 1994, 67, 2367.
  • [15] H. Binder, App. Spectrosc. Rev., 2003, 38, 15.
  • [16] H. Binder, A. Anikin, G. Lantzsch, G. Klose, J. Phys. Chem. B, 1999, 103, 461.
  • [17] D.C. Lee, D. Chapman, Bioscience Reports, 1986, 6, 235.
  • [18] J. Grdadolnik, D. Hadži, Chem. Phys. Lipids, 1993, 65, 121.
  • [19] A. Barth, Ch. Zscherp, Q. Rev. Biophys., 2002, 35, 369.
  • [20] A. Barth, Progr. Biophys. Mol. Biol., 2000, 74, 141.
  • [21] H.H.J. de Jongh, E. Goormaghtigh, J.-M. Ruysschaert, Anal. Biochem., 1996, 242, 95.
  • [22] A. Adochitei, G. Drochioiu, Rev. Roum. Chim., 2011, 56, 783.
  • [23] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, 2006.
  • [24] C.A. Royer, Chem. Rev., 2006, 106, 1769.
  • [25] D.W. Pierce, S.G Boxer, Biophys. J., 1995, 68, 1583.
  • [26] A.S. Ladokhin, Fluorescence Spectroscopy in Peptide and Protein Analysis [w:] Encyclopedia of Analytical Chemistry, R.A. Meyers (Red.), John Wiley & Sons, Inc, 2006.
  • [27] B. Valeur, G. Weber, Photochem. Photbiol., 1977, 25, 441.
  • [28] P.R. Callis, B.K. Burgess, J. Phys. Chem. B, 1997, 101, 9429.
  • [29] C. Shen, R. Menon, D. Das, N. Bansal, N. Nahar, N. Guduru, S. Jaegle, J. Peckham, Y.K. Reshetnyak, Proteins, 2008, 71, 1744.
  • [30] Y.K. Reshetnyak, Y. Koshernik, E.A. Burstein, Biophys. J., 2001, 81, 1735.
  • [31] D.A. Kelkar, A. Chaudhuri, S. Haldar, A. Chattopadhyay, Eur. Biophys. J., 2010, 39, 1453.
  • [32] Y. Chen, M.D. Barkley, Biochemistry, 1998, 37, 9976.
  • [33] A. Chaudhuri, S. Haldar, A. Chattopadhyay, Biochem. Biophys. Res. Comm., 2010, 394, 1082.
  • [34] P.S. Antonini, W. Hillen, N. Ettner, W. Hinrichs, P. Fantucci, S.M. Doglia, J.-A. Bousquet, M. Chabbert, Biophys. J, 1997, 72, 1800.
  • [35] A. Squire, P.J. Verveer, O.Rocks, P. I.H. Bastiaens, J. Struct. Biol., 2004, 147, 62.
  • [36] V. Nanda, L. Brand, Proteins, 2000, 40, 112.
  • [37] S.K.Burley, G.A.Petsko, Science, 1985, 229, 23.
  • [38] M.C. Tory, A.R. Merrill, Biochim. Biophys. Acta, 2002, 1564, 435.
  • [39] H. Raghuraman, D.A. Kelkar, A.Chattopadhyay, Novel insights into protein structure and dynamics utilizing the red edge excitation shift approach [w:] Reviews in Fluorescence, Ch.D. Geddes, J.R. Lakowicz (Red.), Springer 2005.
  • [40] A. Chattopadhyay, Chem. Phys. Lipids, 2003, 122, 3.
  • [41] O. Maier, V. Oberle, D. Hoekstra, Chem. Phys. Lipids, 2002, 116, 3.
  • [42] A.P. Demchenko, Y. Mely, G. Duportail, A.S. Klymchenko, Biophys. J., 2009, 96, 3461.
  • [43] K.A. Kozyra, J.R. Heldt, G. Gondek, P. Kwiek, J. Heldt, Z. Naturforsch, 2004, 59a, 809.
  • [44] E.K. Krasnowska, E. Gratton, T. Parasassi, Biophys. J., 1998, 74, 1984.
  • [45] T. Parasassi, E.K. Krasnowska, L. Bagatolli, E. Gratton, J. Fluor.,1998, 8, 365.
  • [46] T. Parasassi, G. De Stasio, A. d’Ubaldo, E. Gratton, Biophys. J., 1990, 57, 1179.
  • [47] F. Yang Jr., M. Zhang, J. Chen, Y. Liang, Biochim. Biophys. Acta, 2006, 1764, 1389.
  • [48] D. Canet, K. Doering, C.M. Dobson, Y. Dupont, Biophys. J., 2001, 80, 1996.
  • [49] L. Stryer, Biochemia, Wydawnictwo Naukowe PWN, Warszawa 2003.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c33c58c9-d55b-4e46-9957-80589ddd377e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.