PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of species diffusion and methanol decomposition in thermocatalytic reactor based on the Intermetallic phase of Ni3Al for low Reynolds numbers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerical modelling of hydrogen production by means of methanol decomposition in a thermocatalytic reactor using corrugated foil made of the Ni3Al intermetallic phase is shown in the paper. Experimental results of the flow analysis of mixtures containing helium and methanol in a thermocatalytic reactor with microchannels were used for the initial calibration of the CFD calculations (calculations based on the Computational Fluid Dynamics method). The reaction of the thermocatalytic methanol decomposition was modelled based on experimental data, considering the size of the active surface. The drop in the methanol concentration at the inlet to the reactor, ten millimetres in front of the thermocatalytic region, is associated with the diffusion of streams of other components, mainly hydrogen and carbon monoxide. The commercial CFD code was expanded by User Defined Functions (UDFs) to include surface chemical reaction rates in the interphase between the fluid and the solid. Extrapolation of data by means of the implemented numerical model enabled the assessment of the minimum length of microreactor channels and prediction of the optimal dimension at the system outlet. The results obtained by means of numerical calculations were calibrated and compared with the experimental data, confirming a satisfactory consistency of the data.
Rocznik
Strony
211--224
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery PAS-ci, Fiszera 14, 80-231 Gdańsk, Poland
  • Faculty of Mechanical Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery PAS-ci, Fiszera 14, 80-231 Gdańsk, Poland
  • Faculty of Civil and Environmental EngineeringGdańsk University of TechnologyNarutowicza 11/12, 80-233 Gdańsk, Poland
  • Faculty of Civil and Environmental EngineeringGdańsk University of TechnologyNarutowicza 11/12, 80-233 Gdańsk, Poland
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery PAS-ci, Fiszera 14, 80-231 Gdańsk, Poland
  • Faculty of Civil and Environmental EngineeringGdańsk University of TechnologyNarutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery PAS-ci, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Jóźwik P, Grabowski R and Bojar Z 2010 Mater. Sci. Forum 636–637 895
  • [2] Olafsen A, Daniel C, Schuurman Y, Raberg L B, Olsbye U and Mirodatos C 2006 Catal.Today115 179
  • [3] Jóźwik P, Polkowski W and Bojar Z 2015 Materials8 2537
  • [4] Moussa S O and El-Shall M S 2007 J. Alloys Compd.440 178
  • [5] Xu Y, Ma Y, Sakurai J, Teraoka Y, Yoshigoe A, Demura M and Hirano T 2014 Appl.Surf. Sci.315 475
  • [6] Badur J 2003 Numerical modelling of sustainable combustion in gas turbines,IFFM Publlishers
  • [7] Kuo K K and Acharya R 2012 Applications of turbulent and multiphase combustion, John Wiley & Sons
  • [8] Williams F A 1965 Combustion theory, Addison Wesley
  • [9] Chen G-B, Chen C-P, Wu C-Y and Chao Y-C 2007 Appl. Catal. A 332 89
  • [10] Jóźwik P, Badur J and Karcz M 2011 Chemical and Process Engineering 32(3)215
  • [11] Aoki N, Yube K and Mae K 2007 Chem. Eng. J.133 105
  • [12] Duran J E, Mohseni M and Taghipour F 2010 Chem. Eng. Sci.65 1201
  • [13] Mitani H, Xu Y, Hirano T, Demura M and Tamura R 2017 Catalysis Today 281 669
  • [14] Michalska-Domańska M, Bystrzycki J, Jankiewicz B and Bojar Z 2017 Comptes Rendus Chimie20 156
  • [15] Badur J, Ziółkowski P J and Ziółkowski P 2015 Microfluid Nanofluid19 191
  • [16] Badur J, Ziółkowski P, Sławiński D and Kornet S 2015 Energy 92 142
  • [17] Modliński N 2014 Chemical and Process Engineering 35 361
  • [18] Modliński N, Madejski P, Janda T, Szczepanek K and Kordylewski W 2015 Energy 92 77
  • [19] Weber R, Schaffel-Mancini N, Mancini M and Kupka T 2013 Fuel 108 586
  • [20] Ziółkowski P, Stajnke M and Jóźwik P 2017 Transactions IFFM 138 33
  • [21] Flaszyński P, Doerffer P, Szwaba R, Kaczyński P and Piotrowicz M 2015 Journal of Thermal Science 24(6)510
  • [22] Badur J, Ziółkowski P, Zakrzewski W, Sławiński D, Kornet S, Kowalczyk T, Hernet J,Piotrowski R, Felicjancik J and Ziółkowski P J 2014 J. Phys.: Conf. Ser.530
  • [23] Pianko-Oprych P, Kasilova E and Jaworski Z 2014 Chemical and Process Engineering 35 293
  • [24] Badur J, Karcz M, Lemański M and Nastałek L 2011 CMES: Computer Modeling in Engineering & Sciences73 299
  • [25] Ziółkowski P and Badur J 2018 International Journal of Numerical Methods for Heatand Fluid Flow 28(1)64
  • [26] Lewandowski T, Ochrymiuk T and Czerwińska J 2011 ASME Journal of Heat Transfer 133 22401
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c33ac3b7-8d3e-4dc2-818c-8b7308ff1955
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.