PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Applications of Vibratory Crushers to Improve the Efficiency of Industrial Crushing Lines

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents design solutions of currently used vibratory jaw and cone crushers. These crushers operate based on a different type of load exerted on the crushed material than in presently used crushing machines, namely using rapidly changing multiple impacts of relatively short duration. As a result, they enable achieving more beneficial technological results in higher degrees of fragmentation, higher shares of desired fine grain classes, and lower total energy demand. Due to the above-mentioned properties, they can be a more advantageous alternative to currently used crushing machines. Several studies have confirmed the high technological capabilities of vibratory crushers when crushing materials with different physical and mechanical properties. In particular, when crushing hard and very hard materials (very compact rocks, ceramic materials, ferroalloys), these crushers demonstrate significantly better capabilities than the previously used “classic” crusher designs, i.e. jaw, cone, impact. The research results show the technological possibilities of vibratory crushers when used for crushing limestone, for producing sorbents for flue gas desulfurization, and for crushing sanitary ceramic waste for the production of aggregates for concrete. The possibility of using vibratory crushers in a prototype installation for gold extraction is also described. The advantages of implementing vibratory crushers in industrial crushing technological lines are related to increased efficiency, increased technological possibilities, and the simplification of currently used crushing lines. In most cases, this may result in a reduction of the required crushing stages and, consequently, in the simplification of industrial crushing technological lines, directly reducing the required investment and operating costs.
Wydawca
Rocznik
Tom
Strony
546--553
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • AGH University of Krakow Department of Machinery Engineering and Transport
Bibliografia
  • 1. Sidor J., (1997) Development of vibratory crushers design, Maszyny Górnicze, vol. 77, pp. 30-37.
  • 2. Sidor J., Mazur M., (2017) Application of vibration technology in crushing processes. Ceramic Materials, vol. 69 nr 1, pp. 52-56.
  • 3. Machines for very fine crushing (1993) Materials of Mekhanobr-Technogen, Sankt Petersburg.
  • 4. Halicka A., Ogrodnik P., Zegardło B., (2013) Using ceramic sanitary ware waste as concrete aggregate, Construction and Building Materials, vol. 48, pp. 295-305.
  • 5. Sidor J., Mazur M., (2015) Comparative studies of vibratory crushing process performed in jaw crusher, Ceramic Materials, vol. 67 nr 1, pp. 62-66.
  • 6. Sidor J., Mazur M., (2015) Application of vibration technology in crushing processes, Transport Przemysłowy i Maszyny Robocze, vol. 3, pp. 60-65.
  • 7. Sidor J., Mazur M., (2014) Examination of crushing rock crystal in a vibratory jaw crusher, Ceramic Materials, vol. 66 nr 1, pp. 32-36.
  • 8. Sidor J., Feliks J., Mazur M., (2013) Crushers for coal disintegration in conditions of underground mines, Transport Przemysłowy i Maszyny Robocze, vol. 3, pp. 71-74.
  • 9. Feliks J., Mazur M., (2022) Application of impact hammer crusher for rock salt purification. Postępy Techniki Przetwórstwa Spożywczego, vol. 32/61 nr 2, pp. 11-18.
  • 10. Mazur M., Feliks J., (2023) The use of vibratory jaw crusher for feed preparing for granulation proces, Konferencja naukowo-techniczna: przemysł przyjazny dla środowiska: 27-29 marca 2023 Gliwice, Instytut Techniki Górniczej KOMAG, pp. 43-50.
  • 11. Mazur M., (2010) Examination of quartzite and diabase vibratory crushing, Materials of Polish Conference of Young Scientists, Kraków, vol. 5, pp. 93-101.
  • 12. Mazur M., (2017) Research of crushing efficiency in vibra-tory jaw crushers, Doctoral thesis, AGH University of Science and Technology, Unpublished.
  • 13. Mazur M., (2019) Determination of Crushing Energy During Vibratory Crushing, New Trends in Production Engineering, vol. 2, pp. 287-294.
  • 14. Mazur M., (2017) Method of determining the Bond Work Index in vibratory crushing, SGEM2017 Conference Proceedings, vol. 17, issue 11, pp. 903-910.
  • 15. Zawada J., (1995) Obciążenia graniczne i pękanie skał, Wydawnictwo Naukowe PWN.
  • 16. Ballantyne G.R., Powell M.S., (2014) Benchmarking comminution energy consumption for the processing of copper and gold ores, Minerals Engineering, vol. 65, pp. 109-114.
  • 17. Galos K., Szlugaj J., Burkowicz A., (2016) Sources of limestone sorbents for flue gas desulphurization in Poland in the context of the needs of domestic power industry, Polityka energetyczna – energy policy journal, Vol. 19, No. 2.
  • 18. Szlugaj J., Naworyta W., (2015) Analiza zmian podaży gipsu w Polsce w świetle rozwoju odsiarczania spalin w elektrowniach konwencjonalnych, Gospodarka Surowcami Mineralnymi – Mineral Resources Management, vol. 31, z. 2.
  • 19. Roszczynialski W., Gawlicki M., (1997) Kierunki zagospodarowania produktów odsiarczania spalin. Materiały VII Konferencji „Aktualia i perspektywy gospodarki surowcami mineralnymi”. Polanica Zdrój.
  • 20. Galos K., Smakowski T., Szlugaj J., (2003) Flue-gas desulphurisation products from Polish coal-fired power plants. Applied Energy, vol. 75, pp. 257-265.
  • 21. Medina C., Sánchez de Rojas M.I., Frías M., (2012) Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes, Cement & Concrete Composites, vol. 34, pp. 48-54.
  • 22. Silva J., de Brito J., Veiga R., (2008) Fine ceramics replacing cement in mortars partial replacement of cement with fine ceramics in rendering mortars, Mater Struct, vol. 41, pp. 1333-1344.
  • 23. Puertas F., García I., Barba A., Gazulla M.F., Palacios M., Gómez M.P., (2008) Ceramic wastes as alternative raw materials for Portland cement Clinker production, Cem Concr Compos, vol. 30, pp. 798-805.
  • 24. Guerra I., Vivar I., Liamas B., Juan A., Moran J., (2009) Eco-efficient concretes: The efffect of using recycled ceramic material from sanitary installations on the mechanical properties of concrete, Waste Management vol. 29, pp. 643-646.
  • 25. Halicka A., Zegardło B., (2011) Odpady ceramiki sanitarnej jako kruszywo do betonu. Przegląd budowlany, vol. 7-8, pp. 50-55.
  • 26. Najm H.M., Ahmad S., (2022) The use of waste ceramic optimal concrete for a cleaner and sustainable environment – a case study of mechanical properties, Civil and environmental engineering reports, vol. 32, pp. 85-115.
  • 27. Sidor J., (2006) The investigations of the very fine crushing of sanitary ceramic production waste in the vibratory crusher, Zagadnienia urządzeń ochrony środowiska. Monografie Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Inżynierii Mechanicznej i Robotyki, vol. 32, pp. 277-286.
  • 28. Sidor J., Mazur M., Feliks J., (2016) Examination of mineral and ceramic materials vibratory crushing, Mechanizacja, automatyzacja i robotyzacja w górnictwie: Monografia: praca zbiorowa, vol. 2, p. 134-141.
  • 29. Sidor J: (2008) Preliminary investigations of industrial line of mechanical processing of ceramic wastes for recycling, Polish Journal of Environmental Studies, vol. 17 no. 3A, pp. 507-510.
  • 30. Zarogastkij L.P., Azbel J.I. (1993) Universal technique of crushing and separation of primary and secondary raw materials. Russian-Polish Scientific and Technical Seminar on: “Modern technologies of crushing mineral raw materials.” Lublin.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c33723c3-f22b-43d3-9e25-0eec5b1dbc05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.