PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Valorization of Banana Bunch Waste as a Feedstock via Hydrothermal Carbonization for Energy Purposes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the potential use of banana bunch waste (BBW) as a source of bioenergy through hydrothermal carbonization (HTC) was investigated. BBW, a byproduct of banana production, is difficult to use as a fuel due to its low density and carbon ratio. However, its high lignocellulose content indicates its potential as a bioenergy source. To determine the optimal HTC conditions, an experiment was conducted using temperature, water to feedstock ratio, and processing time, with the RSM Box-Behnken method used to produce 15 trial formulations. Energy value and mass yield data were collected to determine the optimal values for both. The main parameter affecting energy yield was found to be the water to feedstock ratio, and the optimal conditions were determined to be a temperature of 180 °C, a water to feedstock ratio of 1.5:1, and a processing time of 15 minutes. The highest energy yield of 99.7% was observed under these conditions, while the lowest mass yield of 25.30% was observed at a temperature of 200°C with a water ratio of 2 and a time of 15 minutes. The heating value of the HTC solid product ranges from 17–27 MJ/kg, which is comparable to low-grade sub-bituminous coal, indicating potential for co-firing with coal and other hydrothermal products as a fuel.
Rocznik
Strony
61--74
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
  • Research and Development Department, Gerlink Energi Nusantara, Bandung, Indonesia
  • Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
  • Research Center for Smart Mechatronic, The National Research and Innovation Agency of the Republic of Indonesia (BRIN), Bandung, Indonesia
autor
  • Research Center for Environmental and Clean Technology, The National Research and Innovation Agency of the Republic of Indonesia (BRIN), Bandung, Indonesia
autor
  • Research Center for Environmental and Clean Technology, The National Research and Innovation Agency of the Republic of Indonesia (BRIN), Bandung, Indonesia
autor
  • Research Center for Environmental and Clean Technology, The National Research and Innovation Agency of the Republic of Indonesia (BRIN), Bandung, Indonesia
  • Research Center for Environmental and Clean Technology, The National Research and Innovation Agency of the Republic of Indonesia (BRIN), Bandung, Indonesia
  • Collaborative Research Center for Zero Waste and Sustainability, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia
Bibliografia
  • 1. Scott, G.J. 2021. A review of root, tuber and banana crops in developing countries: past, present and future,
  • 2. Mago, M., Yadav, A., Gupta, R., Garg, V.K.2021. Management of banana crop waste biomass using vermicomposting technology. Bioresour Technol. 326, 124742. https://doi.org/10.1016/J.BIORTECH.2021.124742
  • 3. Leno, N., Sudharmaidevi, C.R., Byju, G., Thampatti, K.C.M., Krishnaprasad, P.U., Jacob, G., Gopinath, P.P. 2021. Thermochemical digestate fertilizer from solid waste: Characterization, labile carbon dynamics, dehydrogenase activity, water holding capacity and biomass allocation in banana. Waste Management. 123, 1–14. https://doi.org/10.1016/J.WASMAN.2021.01.002
  • 4. Isibika, A., Vinnerås, B., Kibazohi, O., Zurbrügg, C., Lalander, C. 2021. Co-composting of banana peel and orange peel waste with fish waste to improve conversion by black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae. J Clean Prod. 318. https://doi.org/10.1016/j.jclepro.2021.128570
  • 5. Isibika, A., Vinnerås, B., Kibazohi, O., Zurbrügg, C., Lalander, C. 2019 Pre-treatment of banana peel to improve composting by black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae. Waste Management. 100, 151–160 https://doi.org/10.1016/j.wasman.2019.09.017
  • 6. Teshome, Z.T. 2022. Effects of banana peel compost rates on Swiss chard growth performance and yield in Shirka district, Oromia, Ethiopia. Heliyon. 8, e10097. https://doi.org/10.1016/J.HELIYON.2022.E10097
  • 7. Nannyonga, S., Mantzouridou, F., Naziri, E., Goode, K., Fryer, P., Robbins, P. 2018. Comparative analysis of banana waste bioengineering into animal feeds and fertilizers. Bioresour Technol Rep. 2, 107–114. https://doi.org/10.1016/J.BITEB.2018.04.008
  • 8. Deb, S., Kumar, Y., Saxena, D.C. 2022. Functional, thermal and structural properties of fractionated protein from waste banana peel. Food Chem X. 13, 100205. https://doi.org/10.1016/J.FOCHX.2022.100205
  • 9. Motta, G.E., Angonese, M., Ayala Valencia, G., Ferreira, S.R.S. 2022. Beyond the peel Biorefinery approach of other banana residues as a springboard to achieve the United Nations’ sustainable development goals. Sustain Chem Pharm. 30, 100893. https://doi.org/10.1016/J.SCP.2022.100893
  • 10. Sawarkar, A.N., Kirti, N., Tagade, A., Tekade, S.P. 2022. Bioethanol from various types of banana waste: A review. Bioresour Technol Rep. 18, 101092. https://doi.org/10.1016/J.BITEB.2022.101092
  • 11. Khan, A., Iftikhar, K., Mohsin, M., Ubaidullah, M., Ali, M., Mueen, A. 2022. Banana agro-waste as an alternative to cotton fibre in textile applications. Yarn to fabric: An ecofriendly approach. Ind Crops Prod. 189, 115687. https://doi.org/10.1016/J.INDCROP.2022.115687
  • 12. Phirom-on, K., Apiraksakorn, J. 2022. Eco-friendly extraction of banana peel cellulose using a wood charcoal ash solution and application of process wastewater as a naturally-derived product. Bioresour Technol Rep. 19, 101174. https://doi.org/10.1016/J.BITEB.2022.101174
  • 13. Djaenudin, Permana, D., Ependi, M., Putra, H.E. 2021. Experimental Studies on Hydrothermal Treatment of Municipal Solid Waste for Solid Fuel Production. Journal of Ecological Engineering. 22, 208–215. https://doi.org/10.12911/22998993/141588
  • 14. Putra, H.E., Damanhuri, E., Dewi, K., Pasek, A.D. 2018. Hydrothermal carbonization of biomass waste under low temperature condition. In: MATEC Web of Conferences. EDP Sciences
  • 15. Putra, H.E., Permana, D., Djaenudin. 2022. Prediction of higher heating value of solid fuel produced by hydrothermal carbonization of empty fruit bunch and various biomass feedstock. J Mater Cycles Waste Manag. 24, 2162–2171. https://doi.org/10.1007/s10163-022-01463-0
  • 16. Serna-Jiménez, J.A., Luna-Lama, F., Caballero, Á., Martín, M. de los Á., Chica, A.F., Siles, J.Á. 2021. Valorisation of banana peel waste as a precursor material for different renewable energy systems. Biomass Bioenergy. 155. https://doi.org/10.1016/j.biombioe.2021.106279
  • 17. Putra, A.E.E., Amaliyah, N., Nomura, S., Rahim, I. 2022. Plasma generation for hydrogen production from banana waste. Biomass Convers Biorefin. 12, 441–446. https://doi.org/10.1007/s13399-020-00765-3
  • 18. Pachaiyappan, S., Seshadri, S., Sugumaran, P., Priya Susan, V., Ravichandran, P., Seshadri, S. 2012. Production and Characterization of Activated Carbon from Banana Empty Fruit Bunch and Delonix regia Fruit Pod Bio-char Production View project Drinking water production through cost effective models and sustainable agricultural by biochar application View project Production and Characterization of Activated Carbon from Banana Empty Fruit Bunch and Delonix regia Fruit Pod.
  • 19. Fernandes, E.R.K., Marangoni, C., Souza, O., Sellin, N. 2013. Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manag. 75, 603–608. https://doi.org/10.1016/J.ENCONMAN.2013.08.008
  • 20. Singh, R.K., Patil, T., Pandey, D., Tekade, S.P., Sawarkar, A.N. 2022. Co-pyrolysis of petroleum coke and banana leaves biomass: Kinetics, reaction mechanism, and thermodynamic analysis. J Environ Manage. 301, 113854. https://doi.org/10.1016/J.JENVMAN.2021.113854
  • 21. Jiang, F., Cao, D., Zhang, Y., Hu, S., Huang, X., Ding, Y., Wu, C., Li, J., Ding, Y., Liu, K. 2023. Combustion of the banana Pseudo-stem hydrochar by the High-Pressure CO2-Hydrothermolysis: Thermal conversion, kinetic, and emission analyses. Fuel. 331, 125798. https://doi.org/10.1016/J.FUEL.2022.125798
  • 22. Serna-Jiménez, J.A., Luna-Lama, F., Caballero, Á., Martín, M. de los Á., Chica, A.F., Siles, J.Á. 2021. Valorisation of banana peel waste as a precursor material for different renewable energy systems. Biomass Bioenergy. 155, 106279. https://doi.org/10.1016/J.BIOMBIOE.2021.106279
  • 23. Mitan, N.M.M., Sa’adon, M.F.R. 2019 Temperature Effect on Densification of Banana Peels Briquette. Mater Today Proc. 19, 1403–1407. https://doi.org/10.1016/J.MATPR.2019.11.159
  • 24. Bot, B.V., Axaopoulos, P.J., Sakellariou, E.I., Sosso, O.T., Tamba, J.G. 2022. Energetic and economic analysis of biomass briquettes production from agricultural residues. Appl Energy. 321, 119430. https://doi.org/10.1016/J.APENERGY.2022.119430
  • 25. Ku Ahmad, K., Sazali, K., Kamarolzaman, A.A. 2018. Characterization of fuel briquettes from banana tree waste. Mater Today Proc. 5, 21744–21752. https://doi.org/10.1016/J.MATPR.2018.07.027
  • 26. Krungkaew, S., Hülsemann, B., Kingphadung, K., Mahayothee, B., Oechsner, H., Müller, J. 2022. Methane production of banana plant: Yield, kinetics and prediction models influenced by morphological parts, cultivars and ripening stages. Bioresour Technol. 360, 127640. https://doi.org/10.1016/J.BIORTECH.2022.127640
  • 27. Vimal, V., Karim, A.A., Kumar, M., Ray, A., Biswas, K., Maurya, S., Subudhi, D., Dhal, N.K. 2022 Nutrients enriched biochar production through Co-Pyrolysis of poultry litter with banana peduncle and phosphogypsum waste. Chemosphere. 300, 134512. https://doi.org/10.1016/J.CHEMOSPHERE.2022.134512
  • 28. Quintana, G., Velásquez, J., Betancourt, S., Gañán, P. 2009. Binderless fiberboard from steam exploded banana bunch. Ind Crops Prod. 29, 60–66. https://doi.org/10.1016/J.INDCROP.2008.04.007
  • 29. Lertchunhakiat, K., Keela, M., Yodmingkhwan, P., Sirirotjanaput, W., Rungroj, A. 2016. Comparisons of Physical Characteristics of Crossbred Boer Goat Fur Skin Tanned by Coffee Pomace and Gros Michel Banana Bunch. Agriculture and Agricultural Science Procedia. 11, 143–147. https://doi.org/10.1016/j.aaspro.2016.12.024
  • 30. Adebisi, G.A., Chowdhury, Z.Z., Hamid, S.B.A., Ali, E. 2016. Hydrothermally Treated Banana Empty Fruit Bunch Fiber Activated Carbon for Pb(II) and Zn(II) Removal. Bioresources. 11, 9686–9709. https://doi.org/10.15376/BIORES.11.4.9686-9709
  • 31. Prasad, R., Rao, M., Nagasrinivasulu, G. 2009. Mechanical properties of banana empty fruit bunch fibre reinforced polyester composites.
  • 32. Abdullah, N., Azman Miskam, M. 2014. Characterization of Banana (Musa spp.) Pseudo-Stem and Fruit-Bunch-Stem as a Potential Renewable Energy Resource.
  • 33. Kusumaningrum, W.B., Munawar, S.S. 2014. Prospect of Bio-pellet as an Alternative Energy to Substitute Solid Fuel Based. Energy Procedia. 47, 303–309. https://doi.org/10.1016/J.EGYPRO.2014.01.229
  • 34. Sjølie, H.K. 2012. Reducing greenhouse gas emissions from households and industry by the use of charcoal from sawmill residues in Tanzania. J Clean Prod. 27, 109–117. https://doi.org/10.1016/J.JCLEPRO.2012.01.008
  • 35. Nuriana, W., Anisa, N., Martana. 2014. Synthesis Preliminary Studies Durian Peel Bio Briquettes as an Alternative Fuels. Energy Procedia. 47, 295–302. https://doi.org/10.1016/J.EGYPRO.2014.01.228
  • 36. Mwampamba, T.H., Owen, M., Pigaht, M. 2013. Opportunities, challenges and way forward for the charcoal briquette industry in Sub-Saharan Africa. Energy for Sustainable Development. 17, 158–170. https://doi.org/10.1016/J.ESD.2012.10.006
  • 37. Manatura, K. 2021. Novel performance study of recirculated pyro-gas carbonizer for charcoal production. Energy for Sustainable Development. 64, 8–14. https://doi.org/10.1016/J.ESD.2021.07.002
  • 38. Nguyen, C.T., Tungtakanpoung, D., Tra, V.T., Kajitvichyanukul, P. 2022. Kinetic, isotherm and mechanism in paraquat removal by adsorption process using corn cob biochar produced from different pyrolysis conditions. Case Studies in Chemical and Environmental Engineering. 6, 100248. https://doi.org/10.1016/J.CSCEE.2022.100248
  • 39. Ebrahimi, M., Ramirez, J.A., Outram, J.G., Dunn, K., Jensen, P.D., O’Hara, I.M., Zhang, Z. 2023. Effects of lignocellulosic biomass type on the economics of hydrothermal treatment of digested sludge for solid fuel and soil amendment applications. Waste Management. 156, 55–65. https://doi.org/10.1016/J.WASMAN.2022.11.020
  • 40. Mariuzza, D., Lin, J.C., Volpe, M., Fiori, L., Ceylan, S., Goldfarb, J.L. 2022. Impact of Co-Hydrothermal carbonization of animal and agricultural waste on hydrochars’ soil amendment and solid fuel properties. Biomass Bioenergy. 157, 106329. https://doi.org/10.1016/J.BIOMBIOE.2021.106329
  • 41. Qiu, J., Huang, B., Liu, Y., Chen, D., Xie, Z. 2020. Glucose-derived hydrothermal carbons as energy storage booster for vanadium redox flow batteries. Journal of Energy Chemistry. 45, 31–39. https://doi.org/10.1016/J.JECHEM.2019.09.030
  • 42. Sethuraman, V., Kumar, R.D., Prabhakaran, A., Rajkumar, P., Diwakar, K., Senthilkumaran, M., Saravanan, M., Sasikumar, R., Aravinth, K., Ramasamy, P., Manigandan, R. 2022. Synthesis of Mn2V2O7 nanopebbles via hydrothermal method and its high-efficiency energy storage for supercapacitors. J Energy Storage. 55, 105553. https://doi.org/10.1016/J.EST.2022.105553
  • 43. Drabold, E., McGaughy, K., Agner, J., Sellars, D., Johnson, R., Hajer, A.A., Reza, M.T., Bayless, D. 2020. Challenges and process economics for algal carbon capture with novel integration: Hydrothermal carbonization. Bioresour Technol Rep. 12, 100556. https://doi.org/10.1016/J.BITEB.2020.100556
  • 44. Huang, F., Li, D., Wang, L., Zhang, K., Fu, L., Guo, Z., Liang, M., Wang, B., Luo, D., Li, B. 2021 Rational introduction of nitridizing agent to hydrothermal carbonization for enhancing CO2 capture performance of tobacco stalk-based porous carbons. J Anal Appl Pyrolysis. 157, 105047. https://doi.org/10.1016/J.JAAP.2021.105047
  • 45. Zhang, Y., Xie, Y., Chen, D., Ma, D., He, L., Sun, M., Yao, Q. 2022. Application of hydrothermal pretreatment during thermal conversion of hydrocarbon solid fuels. Fuel Processing Technology. 238, 107479. https://doi.org/10.1016/J.FUPROC.2022.107479
  • 46. Poomsawat, S., Poomsawat, W. 2022. Effect of co-hydrothermal carbonization of sugarcane bagasse and polyvinyl chloride on co-production of furfural and solid fuel. Bioresour Technol Rep. 19, 101206. https://doi.org/10.1016/J.BITEB.2022.101206
  • 47. Paiboonudomkarn, S., Wantala, K., Lubphoo, Y., Khunphonoi, R. 2022. Conversion of sewage sludge from industrial wastewater treatment to solid fuel through hydrothermal carbonization proess. Mater Today Proc. https://doi.org/10.1016/J.MATPR.2022.11.107
  • 48. Wilk, M., Śliz, M., Gajek, M. 2021 The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp. Renew Energy. 177, 216–228. https://doi.org/10.1016/J.RENENE.2021.05.112
  • 49. Zhang, Y., Jiang, Q., Xie, W., Wang, Y., Kang, J. 2019 Effects of temperature, time and acidity of hydrothermal carbonization on the hydrochar properties and nitrogen recovery from corn stover. Biomass Bioenergy. 122, 175–182. https://doi.org/10.1016/J.BIOMBIOE.2019.01.035
  • 50. Börjesson, P.I.I. 1996. Energy analysis of biomass production and transportation. Biomass Bioenergy. 11, 305–318. https://doi.org/10.1016/0961-9534(96)00024-4
  • 51. Ghavami, N., Özdenkçi, K., Chianese, S., Musmarra, D., de Blasio, C. 2022. Process simulation of hydrothermal carbonization of digestate from energetic perspectives in Aspen Plus. Energy Convers Manag. 270, 116215. https://doi.org/10.1016/J.ENCONMAN.2022.116215
  • 52. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86, 1781–1788. https://doi.org/10.1016/J.FUEL.2006.12.013
  • 53. Uslu, A., Faaij, A.P.C., Bergman, P.C.A. 2008. Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy. 33, 1206–1223. https://doi.org/10.1016/J.ENERGY.2008.03.007
  • 54. Putra, H.E., Damanhuri, E., Dewi, K., Pasek, A.D. 2020. Hydrothermal treatment of municipal solid waste into coal-like fuel. In: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing.
  • 55. Novianti, S., Biddinika, M.K., Prawisudha, P., Yoshikawa, K. 2014. Upgrading of Palm Oil Empty Fruit Bunch Employing Hydrothermal Treatment in Lab-scale and Pilot Scale. Procedia Environ Sci. 20, 46–54. https://doi.org/10.1016/j.proenv.2014.03.008
  • 56. Hwang, I.H., Aoyama, H., Matsuto, T., Nakagishi, T., Matsuo, T. 2012. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water. Waste Management. 32, 410–416. https://doi.org/10.1016/J.WASMAN.2011.10.006
  • 57. Basso, D., Weiss-Hortala, E., Patuzzi, F., Castello, D., Baratieri, M., Fiori, L. 2015 Hydrothermal carbonization of off-specification compost: A by-product of the organic municipal solid waste treatment. Bioresour Technol. 182, 217–224. https://doi.org/10.1016/J.BIORTECH.2015.01.118
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3324ed6-3fd3-4a45-9871-21c26e7eae18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.