PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics of Polymer Materials with New Smart Utilities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern technologies increasingly often rely on the use of intelligent (also known as “smart”) materials exhibiting unique utilities and properties. The state of knowledge on intelligent polymers ranges from diagnostic research to a more extensive body of knowledge, combined with the knowledge of the practical methods for manufacturing these materials. On the basis of a review of the subject literature, this paper describes the existing smart polymer materials. It also presents the examples of applications for these new materials. In the further part of the paper, an example of how the concept of smart materials can be used in new polymeric products to influence the selected mechanical properties when the surrounding temperature changes. The new material or the acquisition of different properties was created by undercutting or selecting the correct thickness and type of polymer layer from which the new product is made. The example of own research, apart from their analysis, ends with the conclusions of an applicative nature.
Twórcy
  • Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Technical University of Košice, Letná 1/9, 040 01 Košice, Slovak Republic
Bibliografia
  • 1. Garbacz, T., Surface free energy of extruded polymer compositions. Physicochem. Probl. Miner. Process. 2019, 55(6), 1509–1516.
  • 2. Janusz, S., Majewski, Ł., Puszka A. Modern Biodegradable Plastics – Processing and Properties: Part I. Mater. 2020, 13(8), 1–22.
  • 3. Tor – Światek, A. Evaluation of the effectiveness of the microcellular extrusion process of low density polyethylene. Maintenance and Reliability. 2013, 15(3), 225–22
  • 4. Jachowicz, T. Gajdoš, I. Effect of natural ageing on some properties of oxybiodegrading agentcontaining polypropylene products. Przem. Chem. 2014, 93(11), 1983–1885.
  • 5. Yu, X.; Chen, L.; Zhang, M.; & Yi, T. Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials. Chem. Soc. Rev. 2014, 43(15), 5346–5371.
  • 6. Wojciechowski, S.; Boczkowska, A. Intelligent materials 2004. Arch. Metall. Mater. 2004, 49(4), 723–734.
  • 7. Stuart, M.A.C.; Huck, W.T.S.; Genzer, J. et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010, 9, 101–113.
  • 8. Kumar, A.; Srivastava, A.; Galaev, I. Y. et al. Smart polymers: Physical forms and bioengineering applications. Prog. Polym. Sci. 2007, 32(10), 1205–1237.
  • 9. Lin, G.; Chang, S.; Kuo; C. H. et al. Free swelling and confined smart hydrogels for applications in chemomechanical sensors for physiological monitoring. Sens Actuators B Chem. 2009, 136(1), 186–195.
  • 10.Jiang, H. Y.; Kelch, S.; Lendlein, A. Polymers move in response to light. Adv. Mater. 2006, 18(11), 1471–1475.
  • 11. Yang, B.; Huang, W. M.; Li, C.; Li, L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polym. 2006, 47(4), 1348–1356.
  • 12. Tobushi, H.; Hayashi, S.; Hoshio, K.; Miwa, N. Influence of strain-holding conditions on shape recovery and secondary-shape forming in polyurethane-shape memory polymer.
  • 13. Leng, J.; Lu, H.; Liu, Y.; Huang, W. M.; Du, S. Shape-memory polymers – a class of novel smart materials. MRS Bull. 2009, 34(11), 848–855.
  • 14. Ohki, T., Ni, Q. Q., Ohsako, N., & Iwamoto, M. Mechanical and shape memory behavior of composites with shape memory polymer. Compos. PT A- Appl Sci. Manuf. 2004, 35(9), 1065–1073.
  • 15. Ratna, D.; Karger-Kocsis, J. Recent advances in shape memory polymers and composites: a review. J. Mater. Sci. 2008, 43(1), 254–269.
  • 16. Ni, Q. Q., Zhang, C. S., Fu, Y., Dai, G., & Kimura, T. Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos. Struct., 2007, 81(2), 176–184.
  • 17. Podkościelna, B., Lipke, A., Majdan, M., Gawdzik, B., Bartnicki, A., Thermal and photoluminescence analysis of a methacrylic diester derivative of naphthalene-2,7-diol, J. Therm. Anal. Calorim. 2016, 126, 161–170.
  • 18. Fila, K., Grochowicz, M., Podkościelna, B. Thermal and spectral analysis of copolymers with sulphur groups, J. Therm. Anal. Calorim. 2018 133(1), 489–497.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c32ecce0-e051-45f1-9961-819bcafb5a00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.