Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Ocena zachowania sejsmicznego mostów kolejowych z uwzględnieniem oddziaływania pomiędzy torem i mostem
Języki publikacji
Abstrakty
Mosty kolejowe wykazują dużą odporność na trzęsienia ziemi. Pomimo, że ich wytrzymałość była określana pod względem jakościowym w wielu opracowaniach, m.in. Stowarzyszenia AREMA (ang. American Railway Engineering and Maintenance of Way Association), dotychczas nie zaproponowano kryteriów ilościowych tej oceny. Celem niniejszej pracy jest przedstawienie kryteriów ilościowych oceny zachowania się mostów kolejowych poddanych działaniu obciążeń sejsmicznych. W artykule przedstawiono modele MES odpowiedzi dynamicznej mostów w warunkach sejsmicznych, w których uwzględniono oddziaływanie toru kolejowego z mostem lub to oddziaływanie nie było brane pod uwagę. Badane modele oceniane były z wykorzystaniem analizy pushover i dynamicznej analizy przyrostowej na podstawie czternastu zapisów trzęsień ziemi, które miały miejsce w przeszłości. Wyniki analiz wyraźnie pokazują, że zaproponowany model uwzględniający oddziaływanie toru z mostem zachowuje się w warunkach sejsmicznych lepiej pod względem wytrzymałościowym. W przypadku tego modelu parametry takie jak: przemieszczenie pomostu, siła ścinająca pomiędzy torem i pomostem oraz obrót plastyczny przegubów są mniejsze o odpowiednio 70-90%, 20-83% i 85-100%. W pracy zaproponowano równania do szacowania przemieszczenia pomostu oraz siły ścinającej w podstawie toru, bez uwzględnienia oddziaływania toru z mostem, wykorzystując metodę maksimów przyśpieszenia ziemskiego (ang. Peak Ground Acceleration, PGA), zarejestrowanych podczas wstrząsów sejsmicznych.
Railway bridges have historically performed well in the previous earthquakes. Although this performance has qualitatively been studied in some references such as AREMA code, no quantitative criteria has been proposed for it. Thus, this study aims to present quantitative criteria for railway bridge performance under seismic loads. In the paper, seismic behaviour of railway bridges, with and without track-bridge interaction (TBI), is calculated through finite element modeling. Pushover and incremental dynamic analyses, are utilized to assess the proposed method, considering fourteen records of the past earthquakes. The results clearly show superior performance of the proposed model with track system, in which the deck displacement, base shear, and plastic rotation decrease by 70%-90%, 20%-83%, and 85%-100%, respectively. Finally, two equations are proposed to calculate deck displacement and base shear of railway bridges without performing track-bridge interaction (TBI) by Peak Ground Acceleration (PGA) of the applied record approximately.
Wydawca
Czasopismo
Rocznik
Tom
Strony
51--66
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- University of Qom, Department of civil engineering, Khodakaram Blvd., 37195-1519 Qom, Iran
autor
- University of Qom, Department of civil engineering, Khodakaram Blvd., 37195-1519 Qom, Iran
autor
- University of Wisconsin-Milwaukee, Department of Civil and Environmental Engineering, Milwaukee, WI 53211, Stany Zjednoczone Ameryki Północnej
Bibliografia
- 1. Esveld I.C.: A better understanding of continuous welded rail track. Parameters, 1, 1996, 9-6
- 2. Bruneau M.: Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake–a North American perspective. Engineering Structures, 20, 12, 1998, 1063-1078
- 3. Biondi B., Muscolino G., Sofi A.: A substructure approach for the dynamic analysis of train-track-bridge system. Computers & structures, 83, 28-30, 2005, 2271-2281
- 4. Bu Y.Z.: Research on the transmission mechanism of longitudinal force for highspeed railway bridges. Ph. D. Dissertation in Civil Engineering, Southwest Jiaotong University, 1998
- 5. Read D., LoPresti J.: Management of rail neutral temperature and longitudinal rail forces. Railway Track and Structures, 101, 8, 2005, 18-19
- 6. Ruge P., Birk C.: Longitudinal forces in continuously welded rails on bridgedecks due to nonlinear track-bridge interaction. Computers & structures, 85, 7-8, 2007, 458-475
- 7. Xu Q.Y., Zhang X.J.: Longitudinal forces characteristic of Bogl longitudinal connected ballastless track on high-speed railway bridge [J]. Journal of Central South University: Science and Technology, 40, 2, 2009, 526-532
- 8. Yan B., Dai G.L., Zhang H.P.: Beam-track interaction of high-speed railway bridge with ballast track. Journal of Central South University, 19, 5, 2012, 1447-1453
- 9. Battini J.M., Ülker-Kaustell M.: A simple finite element to consider the non-linear influence of the ballast on vibrations of railway bridges. Engineering structures, 33, 9, 2011, 2597-2602
- 10. Dai G.L., Liu W.S.: Applicability of small resistance fastener on long-span continuous bridges of high-speed railway. Journal of Central South University, 20, 5, 2013, 1426-1433
- 11. Rauert T., Bigelow H., Hoffmeister B., Feldmann M.: On the prediction of the interaction effect caused by continuous ballast on filler beam railway bridges by experimentally supported numerical studies. Engineering Structures, 32, 12, 2010, 3981-3988
- 12. AREMA. Seismic Design For Railway Structures. American Railway Engineering and Maintenance-of-Way Association, Washington, United States, 2006
- 13. Khan M.A.: Earthquake-Resistant Structures: Design, Build, and Retrofit. Butterworth-Heinemann, 2013
- 14. He X., Kawatani M., Hayashikawa T., Matsumoto T.: Numerical analysis on seismic response of Shinkansen bridge-train interaction system under moderate earthquakes. Earthquake engineering and engineering vibration, 10, 1, 2011, 85-97
- 15. Zhao Z., Wu G., Ali E., Wang X., Kou C.: Rock slope stability evaluation in static and seismic conditions for left bank of Jinsha River Bridge along Lijiang-Xamgyi’nyilha railway, China. Journal of Modern Transportation, 20, 3, 2012, 121-128
- 16. Yan B., Liu S., Pu H., Dai G., Cai X.: Elastic-plastic seismic response of CRTS II slab ballastless track system on high-speed railway bridges. Science China Technological Sciences, 60, 6, 2017, 865-871
- 17. Caglayan O., Ozakgul K., Tezer O., Uzgider E.: Evaluation of a steel railway bridge for dynamic and seismic loads. Journal of Constructional Steel Research, 67, 8, 2011, 1198-1211
- 18. Mu D., Gwon S.G., Choi D.H.: Dynamic responses of a cable-stayed bridge under a high speed train with random track irregularities and a vertical seismic load. International Journal of Steel Structures, 16, 4, 2016, 1339-1354
- 19. Ryjáček P., Vokáč M.: Long-term monitoring of steel railway bridge interaction with continuous welded rail. Journal of Constructional Steel Research, 99, 2014, 176-186
- 20. Dai G.L., Yan B.: Longitudinal forces of continuously welded track on high-speed railway cable-stayed bridge considering impact of adjacent bridges. Journal of Central South University, 19, 8, 2012, 2348-2353
- 21. Ruge P., Widarda D.R., Schmälzlin G., Bagayoko L.: Longitudinal track-bridge interaction due to sudden change of coupling interface. Computers & Structures, 87, 1-2, 2009, 47-58
- 22. UIC774-3. Track-bridge interaction. Union Internationale des Chemins de fer, Paris, 2001
- 23. EN13764-1:2002 Railway applications - Track - Rail - Part 1. European Standard, Brussles
- 24. Zhang J., Wu D.J., Li Q.: Loading-history-based track-bridge interaction analysis with experimental fastener resistance. Engineering Structures, 83, 2015, 62-73
- 25. Ryjáček P., Howlader M.M., Vokáč M., Stollenwerk B., Ondovčák P.: The rail-bridge interaction-recent advances with ERS fastening system for steel bridges. Transportation Research Procedia, 14, 2016, 3972-3981
- 26. CALTRANS. Seismic design criteria. California Department of Transportation, Sacramento, California, 2004
- 27. Shinde D., Nair Veena V., Pudale Yojana M.: Pushover analysis of multi story building. International Journal of Research in Engineering and Technology, 3, 2014, 691-693
- 28. FEMA-350 Recommended Seismic Design Criteria for new steel moment-frame buildings. Federal Emergency Management Agency, Washington, D.C., 2000
- 29. Bertero V.V.: Strength and deformation capacities of buildings under extreme environments. Structural engineering and structural mechanics, 53, 1, 1977, 29-79
- 30. Chopra A.K., Goel R.K.: A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake engineering & structural dynamics, 31, 3, 2002, 561-582
- 31. Chopra A.K., Goel, R.K.: A modal pushover analysis procedure to estimate seismic demands for unsymmetric plan buildings. Earthquake engineering & structural dynamics, 33, 8, 2004, 903-927
- 32. Vamvatsikos D., Cornell C.A.: Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31, 3, 2002, 491-514
- 33. Shome N., Cornell C.A.: Normalization and scaling accelerograms for nonlinear structural analysis. Proceedings of the 6th US National Conference on Earthquake Engineering, 1-12 May 1998, Seattle, Earthquake Engineering Research Institute, Oakland (CD-ROM)
- 34. Strong Motion Database. Pacific Earthquake Engineering Research (PEER), 2005
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c32e6021-36ed-4df0-a740-d4e1c80abdc6