PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fault diagnosis in nonlinear hybrid systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of fault diagnosis in hybrid systems is investigated. It is assumed that the hybrid systems under consideration consist of a finite automaton, a set of nonlinear difference equations and the so-called mode activator that coordinates the action of the other two parts. To solve the fault diagnosis problem, hybrid residual generators based on both diagnostic observers and parity relations are used. It is shown that the hybrid nature of the system imposes some restrictions on the possibility of creating such generators. Sufficient solvability conditions of the fault diagnosis problem are found. Examples illustrate details of the solution.
Rocznik
Strony
635--648
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Automation and Control, Far Eastern Federal University, 8 Sukhanova St., Vladivostok, 690990, Russia; Department of Robotic Systems, Institute of Marine Technology Problems, 5 Sukhanova St., Vladivostok, 690990, Russia
autor
  • Department of Management, Far Eastern Federal University, 8 Sukhanova St., Vladivostok, 690990, Russia
Bibliografia
  • [1] Alcorta-Garcia, E. and Frank, P. (1997). Deterministic nonlinear observer based approach to fault diagnosis: A survey, Control Engineering Practice 5(5): 663–670.
  • [2] Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer, Berlin.
  • [3] Cocquempot, V., Mezyani, T., and Staroswiecki, M. (2004). Fault detection and isolation for hybrid systems using structured parity residuals, 5th Asian Control Conference, Melbourne, Australia, pp. 1204–1212.
  • [4] Ding, S. (2014). Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems, Springer, London.
  • [5] Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, New York, NY.
  • [6] Gruyitch, L. (2007). Nonlinear hybrid control systems Nonlinear Analysis: Hybrid Systems 1(1): 139–140.
  • [7] Farhat, A. and Koenig, D. (2017). Robust fault detection for uncertain switched systems, 20th IFAC World Congress, Toulouse, France, pp. 15830–15835.
  • [8] Hartmanis, J. and Stearns, R. (1966). The Algebraic Structure Theory of Sequential Machines, Prentice-Hall, New York, NY.
  • [9] Isidori, A. (1995). Nonlinear Control Systems, Springer, London.
  • [10] Kaldmäe, A., Kotta, Ü., Shumsky, A., and Zhirabok, A. (2013). Measurement feedback disturbance decoupling in discrete-time nonlinear systems, Automatica 49(9): 2887–2891.
  • [11] Laboudi, K., Messai, N., and Manamanni, N. (2015). Fault estimation for a class of switched linear systems, IFAC Symposium SAFEPROCESS 2015, Paris, France, pp. 1054–1059.
  • [12] Leth, J. and Wisniewski, R. (2014). Local analysis of hybrid systems on polyhedral sets with state-dependent switching, International Journal of Applied Mathematics and Computer Science 24(2): 341–355, DOI: 10.2478/amcs-2014-0026.
  • [13] Li, J., Ding, S., Qiu, J., Yang, Y., and Zhang, Y. (2016). Approach for discrete-time nonlinear systems via piecewise-fuzzy Lyapunov functions, IEEE Transactions on Fuzzy Systems 24(6): 1320–1333.
  • [14] Patton, R. (1994). Robust model-based fault diagnosis: The state of the art, IFAC Symposium SAFEPROCESS 1994, Espoo, Finland, pp. 1–24.
  • [15] Patton, R., Frank, P., and Clark, R. (2000). Issues of Fault Diagnosis for Dynamic Systems, Springer, London.
  • [16] Pröll, S., Jarmolowitz, F., and Lunze, J. (2015). Structural diagnosability analysis of switched systems, IFAC Symposium SAFEPROCESS 2015, Paris, France, pp. 156–163.
  • [17] Schreier, G., Ragot, J., Patton, R., and Frank, F. (1997). Observer design for a class of nonlinear systems, IFAC Symposium SAFEPROCESS 1997, Hull, UK, pp. 498–503.
  • [18] Shumsky, A. and Zhirabok, A. (2006). Nonlinear diagnostic filter design: Algebraic and geometric points of view, International Journal of Applied Mathematics and Computer Science 16(1): 115–127.
  • [19] Shumsky, A. and Zhirabok, A. (2010). Unified approach to the problem of full decoupling via output feedback, European Journal of Control 16(4): 313–325.
  • [20] Shumsky, A., Zhirabok, A., Jiang, B., and Yang, H. (2012). Transformation of hybrid systems: Application to reduced order observer design, IASTED International Conference on Control and Applications, Crete, Greece, pp. 98–103.
  • [21] Shumsky, A. and Zhirabok, A. (2012). Redundancy relations for fault diagnosis in hybrid systems, IFAC Symposium SAFEPROCESS 2012, Mexico, Mexico, pp. 1226–1231.
  • [22] Tabatabaeipour, S., Ravn, A., Izadi-Zamanabadi, R., and Bak, T. (2009). Active fault diagnosis of linear hybrid systems, IFAC Symposium SAFEPROCESS 2009, Barcelona, Spain, pp. 211–216.
  • [23] Yang, H., Jiang, B., and Cocquempot, V. (2010). Fault Tolerant Control Design for Hybrid Systems, Springer, Berlin/Heidelberg.
  • [24] Witczak, M. (2014). Fault Diagnosis and Fault Tolerant Control Strategies for Nonlinear Systems, Springer, Berlin/Heidelberg.
  • [25] Zattoni, E. (2018). A geometric approach to structural model matching by output feedback in linear impulsive systems, International Journal of Applied Mathematics and Computer Science 28(1): 25–38, DOI: 10.2478/amcs-2018-0002.
  • [26] Zhao, S., Huang, B., Luan, X., Yin, Y., and Liu, F. (2015). Robust fault detection and diagnosis for multiple-model systems with uncertainties, IFAC Symposium SAFEPROCESS 2015, Paris, France, pp. 137–142.
  • [27] Zhirabok, A. and Shumsky, A. (2008). The Algebraic Methods for Analysis of Nonlinear Dynamic Systems, Dalnauka, Vladivostok, (in Russian).
  • [28] Zhirabok, A., Shumsky, A., and Pavlov, S. (2017). Diagnosis of linear dynamic systems by the nonparametric method, Automation and Remote Control 78(7): 1173–1188.
  • [29] Zhirabok, A., Shumsky, A., Solyanik, S., and Suvorov, A. (2017). Fault detection in nonlinear systems via linear methods, International Journal of Applied Mathematics and Computer Science 27(2): 261–272, DOI: 10.1515/amcs-2017-0019.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c32a78ff-e3fe-43fb-9a65-459bc2298a5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.