PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of TiO2 modifications on the effectiveness of photocatalytic processes [review]

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper outlines the recent studies on the application of photocatalysis using semiconductors, with modified titanium dioxide (TiO2) in the process of reducing chemical contamination of surface and ground waters. During the last forty years, an increasing interest in catalysts of this type is noticeable. Hence, a wide range of methods of TiO2 modifications have been proposed so far by using its various polymorphs, composites with metals and non-metals and polymer-coatings or impregnating it with dyes that effectively absorb sunlight.
Twórcy
autor
  • University of Opole, Faculty of Chemistry, Oleska 48, 45-052 Opole
autor
  • University of Opole, Faculty of Chemistry, Oleska 48, 45-052 Opole
autor
  • University of Opole, Faculty of Chemistry, Oleska 48, 45-052 Opole
Bibliografia
  • [1] M. Bellardita, A. Di Paola, B. Megna, L. Palmisano, Absolute crystallinity and photocatalytic activity of brookite TiO2 samples, ApplCatal B-Environ. 201 (2017) 150-158.
  • [2] H.S. Chen, C.Su, J.L. Chen, T.Y. Yang, N.M. Hsu, W.R. Li, Preparation and Characterization of Pure Rutile TiO2 Nanoparticles for Photocatalytic Study And Thin Films for Dye-Sensitized Solar Cell, Hindawi Publishing Corporation Journal of Nanomaterials, 2011 (2011) 1-8.
  • [3] H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, J PhotochPhotobio C: Photochemistry Reviews, 15 (2013) 1-20.
  • [4] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J PhotochPhotobio C: Photochemistry Reviews, 1 (2000) 1-21.
  • [5] D. Chen, A.K. Ray, Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2, ApplCatal BEnviron. 23 (1999) 143-157.
  • [6] Y. Ohama, D. Van Gemert, Application of Titanium Dioxide Photocatalysis to Construction Materials, Springer 5 (2011).
  • [7] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog Solid State Ch. 32 (2004) 33-177.
  • [8] R. Thiruvenkatachari, S. Vigneswaran, I.S. Moon, A review on UV/TiO2 photocatalytic oxidation process, Korean J. Chem. Eng, 25 (2008) 64-72.
  • [9] A. Fujishima, X. Zhang, D.A. Tryk, TiO2photocatalysis and related surface phenomena, Surf Sci Rep. 63 (2008) 515-582.
  • [10] H.A. Foster, I.B. Ditta, S. Verghese, A. Steele, Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity, ApplMicrobiolBiotechnol. 90 (2011) 1847-1868.
  • [11] P. Verma, S.K. Samanta, Degradation kinetics of pollutants present in a simulated wasterwater matrix using UV/TiO2 photocatalysis and its microbiological toxicity assessment, Res ChemIntermed. 43 (2017) 6317-6341.
  • [12] T. Kasza, Badanie właściwości fotokatalitycznych I charakterystyka fizykochemiczna nanokrystalicznych filmów TiO2 na podłożu ceramicznym, Praca doktorska (2007).
  • [13] E. Kusiak-Nejman, Preparatyka i badania fotokatalizatorów TiO2/C do oczyszczania wody i ścieków, Praca doktorska (2012).
  • [14] R.M. Kadam, B. Rajeswari, A. Sengupta, S.N. Achary, R.J. Kshirsagar, V. Natarajan, Structural characterization of titania by X-ray diffraction, photoacoustic, Raman spectroscopy and electron paramagnetic resonance spectroscopy, SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 137 (2015) 363-370.
  • [15] T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, Morphology of a TiO2 Photocatalyst (Degussa, P25) Consisting of Anatase and Rutile Crystalline Phases, J Catal. 203 (2001) 82-86.
  • [16] J. H. Lee, Y. S. Yang, Synthesis of TiO2nanoaprticles with pure brookite at low temperature by hydrolysis of TiCl4 using HNO3 solution, J Mater Sci. 41 (2006) 557-559.
  • [17] X. Wei, G. Zhu, J. Fang, J. Chen, Synthesis, Characterization, and Photocatalysis of Well-Dispersible Phase-Pure Anatase TiO2 Nanoparticles, Hindawi Publishing Corporation International Journal of Photoenergy, 2013 (2013) 1-6.
  • [18] C. Liu, D. Zhang, Y. Sun, Synthesis of hollow anatase spheres with enhanced optical performance, RSC, 16 (2014) 8421-8428.
  • [19] M. Rӑileanu, M. Crișan, I. Nitoi, A. Ianculescu, P. Oancea, D. Crișan, L. Todan, TiO2-based Nanomaterials with Photocatalytic Propertiesfor the Advanced Degradation of Xenobiotic Compounds from Water. A Literature Survey, Water Air Soil Poll. 1548 (2013) 1-45.
  • [20] J.M. Herrmann, Titania-based true heterogenousphotocatalysis, Environ SciPollut Res. 19 (2012) 3655-3665.
  • [21] R. Słota, G. Dyrda, M. Galbas, G. Mele, Fotokatalizatory hybrydowe z matrycą TiO2 aktywowaną ftalocyjaninami lantanowców, Chemik, 68 (2014) 11-13.
  • [22] B. Ohtani, O.O. Prieto-Mahaney, D. Li, R. Abe, What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test, J PhotochPhotobio A. 216 (2010) 179-182.
  • [23] T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Enhanced direct sunlight photocatalytic oxidation of methanol using nanocrystalline TiO2 calcined at different temperature, J Nanopart Res. 16 (2014) 1-16.
  • [24] D. Kwon, S.H. Lee, J. Kim, T.H. Yoon, Dispersion, Tractionation and Characterization of Sub-100 nm P25 TiO2 Nanoparticles in Aqueous Media, ToxEHS (2010) 78-85.
  • [25] E. Grabowska, Otrzymywanie nowych fotokatalizatorów o podwyższonej aktywności w świetle UV oraz Vis, Praca doktorska (2011).
  • [26] M. Tygielska, B. Tryba, Wpływ domieszkowania WO3 do TiO2 na poprawę jego zdolności fotokatalitycznych, Oficyna Wydawnicza Politechniki Wrocławskiej, 4 (2014) 922-931.
  • [27] J. Carbajo, P. Garcia-Muňoz, A. Tolosana-Moranchel, M. Faraldos, A. Bahamonde, Effect of water composition on the photocatalytic removal of pesticides with different TiO2 catalysts, Environ Sci. Pollut Res. 21 (2014) 12233-12240.
  • [28] G. Marcì, E. Garcìa-López, G. Mele, L. Palmisano, G. Dyrda, R. Słota, Comparison of the photocatalytic degradation of 2-propanol in gas-solid and liquid-solid systems by using TiO2-LnPc2 hybrid powders, Catal Today, 143 (2009) 203-210.
  • [29] R. Słota, G. Dyrda, K. Szczegot, G. Mele, I. Pio, Photocatalytic activity of nano and microcrystalline TiO2 hybrid systems involving phthalocyanine or porphyrin sensitizers, Photoch. Photobio. Sci. 10 (2011) 361-366.
  • [30] E.G. Kogan, A.V. Ivanov, L.G. Tomilova, N.S. Zefirov, Synthesis of mono- and bisphthalocyanine complexes using microwave irradiation, Mendeleev Commun, 12(2) (2002) 54-55.
  • [31] G. Mele, R. Del Sole, G. Vasapollo, E. García-López, L. Palmisano, J. Li, R. Słota, G. Dyrda, TiO2-based photocatalysts impregnated with metallo-porphyrins employed for degradation of 4-nitrophenol in aqueous solutions: Role of metal and macrocycle, Res. Chem. Intermed. 33 (2007) 433-448.
  • [32] G. Mele, E. García-López, L. Palmisano, G. Dyrda, R. Słota, Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with lanthanide double-decker phthalocyanine complexes, J. Phys. Chem. C 111 (2007) 6581-6588.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3204820-18e0-4c28-98c2-8b66714a4e8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.