Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Drinking Water Supply Service is considered vital in all societies, modern and old. As for all vital services, governance undertakes all possible measures to guarantee their supply continuity. However, severe service supply disruptions may occur under the action of threats, series of failures cascading or any combination of them. Threats may be nature originated: climatic extreme conditions, earthquakes, floods. It may also be man originated: ill-informed managing actions, organisational misconduct or malevolence. As for failures, it can be humans or simply systemic: unproven technology, fatigue, ageing, overloading or operational hazards. Whatever the origins of the disruptions, societies conceive legislations, standards and processes in order to enhance the resilience of the vital service supply systems and the correspondent critical infrastructures. They provide appropriate R&D frames and assets, amongst others, in order to conduct activities on critical infrastructures resilience modelling, simulation and analysis (MS&A). The paper contributes into the development of a resilience concept and a methodology for integrating cascades of failures to help in crisis management decision making. The proposed methodology is applied on a case study belonging to the drinking Water Supply Services and its critical infrastructures.
Słowa kluczowe
Rocznik
Tom
Strony
55--64
Opis fizyczny
Bibliogr. 41 poz., tab., wykr.
Twórcy
autor
- Rzeszow University of Technology, Rzeszow, Poland
autor
- Rzeszow University of Technology, Rzeszow, Poland
autor
- National Institute of Applied Sciences of Rouen – Normandy, Dept. Of Mechanics, St. Etienne du Rouvray, France
Bibliografia
- [1] Boryczko, K., Piegdon, I. & Eid, M. (2014). Collective water supply systems risk analysis model by means of RENO software. Safety, Reliability and Risk Analysis: Beyond the Horizon, Steenbergen et al. (Eds.) Taylor & Francis Group, London.
- [2] Eid, M. (2011). A General Analytical Solution for the Occurrence Probability of a Sequence of Ordered Events following Poison Stochastic Processes. Journal of Reliability Theory & Applications, RT&A 3, 22, 102-113.
- [3] Eid, M., Souza de Cursi, E. & El-Hami, A. (2017). Critical Infrastructure Preparedness: Cascading of Disruptions Considering Vulnerability and Dependency. Journal of Polish Safety and Reliability Association Summer Safety and Reliability Seminars 1, 8.
- [4] Eid, M., El-Hami, A., Souza de Cursi, E., Kołowrocki, K., Kuligowska, E. & Soszyńska-Budny, J. (2015). Critical Infrastructures Protection (CIP) - Coupled Modelling for Threats and Resilience. Journal of Polish Safety and Reliability Association Summer Safety and Reliability Seminars 6, 1, 85-94.
- [5] Eid, M., Hakkarainen, T., Terhi, K., Souza-Cursi-de, E. & El-Hami, A. (2016). Critical Infrastructure Preparedness: Cascading of Disruptions Considering Vulnerability and Dependency. Journal of Polish Safety and Reliability Association Summer Safety and Reliability Seminars 1, 7, 61-66.
- [6] Kundzewicz, Z.W., Szamalek, K. & Kowalczak, P. (1999). The Great Flood of 1997 in Poland. Hydrological Sciences Journal des Sciences Hydrologiques, 44, 6, 855-870.
- [7] Luthar, S.S., & Cicchetti, D. (2000). The construct of resilience: Implications for interventions and social policies. Development and Psychopathology, 12, 857-885. DOI: 10.1017/S0954579400004156.
- [8] Luthar, S.S., Cicchetti, D., & Becker, B. (2000). The construct of resilience: A critical evaluation and guidelines for future work. Child Development, 71, 543-562. DOI: 17 10.1111/1467-8624.00164
- [9] Mays, L.W. (2005). The role of risk analysis in water resources engineering. Arizona State University, Arizona.
- [10] Merkel, W. & Castell-Exner, C. (2010). Managing risk under normal operation and in crisis situations. Water Utility Management International 9, 19-22.
- [11] Michaud D. & Apostolakis G.E. (2006). Methodology for ranking elements of water-supply networks. Journal of Infrastructure Systems, 12(4), 230-242.
- [12] Piegdoń, I, Tchórzewska-Cieślak, B. & Eid M. (2018). Managing the risk of failure of the water supply network using the mass service system. Eksploatacja i Niezawodność - Maintenance and Reliability 2, 20, 280-287. http://dx.doi.org/10.17531/ein.2018.2.15.
- [13] Piegdoń, I., Tchórzewska-Cieślak B. & Eid, M. (2015). Water Distribution Subsystem: system failure analysis on view of Critical Infrastructure (CI) resilience and preparedness enhancement and management. 48th ESReDA seminar on: Critical Infrastructures Preparedness - Status of Data for Resilience Modelling, Simulation and Analysis (MS&A), Proceedings of the 48th ESReDA Seminar, May 28-29, 2015, Wroclaw, Poland.
- [14] Pietrucha-Urbanik, K. &Tchórzewska-Cieślak, B. (2014). Water Supply System operation regarding consumer safety using Kohonen neural network; in: Safety, Reliability and Risk Analysis: Beyond the Horizon, Steenbergen et al. (Eds), Taylor & Francis Group, London, 1115-1120.
- [15] Rak, J. (2004). Istota ryzyka w funkcjonowaniu systemu zaopatrzenia w wodę. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów.
- [16] Rak, J. (2005). Podstawy bezpieczeństwa systemów zaopatrzenia w wodę. Wydawnictwo PAN - Komitet Inżynierii Środowiska t. 28, Lublin.
- [17] Rak, J.R. (2015). Propozycja oceny dywersyfikacji objętości wody w sieciowych zbiornikach wodociągowych. Czasopismo Inżynierii Lądowej, Środowiska i Architektury - Journal of Civil Engineering, Environment and Architecture. JCEEA 62, 1/15, 339-349. DOI:10.7862/rb.2015.23
- [18] Rak, J. (2006). Przegląd metod oceny ryzyka związanego z funkcjonowaniem systemów komunalnych. Instal 6, 54-56.
- [19] Rak, J. (2009). Selected problems of water supply safety. Environmental Protection Engineering 35, 29-35.
- [20] Rak, J. (2009). Systemowe zarządzanie bezpieczeństwem SZW. Instal 2, 43-48.
- [21] Rak, J., Pietrucha-Urbanik, K. (2015). New directions for the protection and evolution of water supply systems - smart water supply. Czasopismo Inżynierii Lądowej, Środowiska i Architektury - Journal of Civil Engineering, Environment and Architecture. JCEEA 62, 3/I, 365-373. DOI: 10.7862/rb.2015.121
- [22] Rak, J. & Tchórzewska-Cieślak, B. (2005). Metody analizy i oceny ryzyka w systemie zaopatrzenia w wodę. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów.
- [23] Rak, J. & Tchórzewska-Cieślak, B. (2006) Review of matrix methods for risk assessment in water supply system. Journal of Konbin 1, 1, 67-76.
- [24] Rak, R.J. & Tchórzewska-Cieślak, B. (2015) Basis of technical system safety on the example of water supply system. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów.
- [25] Staff Working Document on the REFIT Evaluation of the Drinking Water Directive 98/83/EC SWD (2016) 428 final.
- [26] Tchórzewska-Cieślak, B. (2010). Failure risk analysis in the water distribution system. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 1, 247-255.
- [27] Tchórzewska-Cieślak, B. (2011). Metody analizy i oceny ryzyka awarii podsystemu dystrybucji wody. Oficyna Wydawnicza Politechniki Rzeszowskiej. Rzeszów.
- [28] Tchórzewska-Cieślak, B. (2009). Risk management system in water-pipe network functioning. Proceedings of the European Safety and Reliability Conference, Safety, Reliability and Risk Analysis: Theory, Methods and Application 3, 2463-2471.
- [29] Tchórzewska-Cieślak, B. (2009). Water supply system reliability management. Environmental Protection Engineering 35, 29-35.
- [30] Tchórzewska-Cieślak, B. & Pietrucha-Urbanik, K. (2013). Failure risk analysis in the collective water supply systems in crisis situations. Journal of Polish Safety and Reliability Association 1, 4, 129-136.
- [31] Tchórzewska-Cieślak, B. & Pietrucha-Urbanik, K. (2017). Methods for integrated failure risk analysis of water network in terms of water supply system functioning management. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars 1, 8, 157-166.
- [32] Tchorzewska-Cieslak, B., Boryczko, K. & Eid, M. (2012). Failure scenarios in water supply system by means of fault tree analysis. Advances in Safety, Reliability and Risk Management - Bérenguer, G. & Guedes S. (eds), Taylor & Francis Group, London, 2492-2499.
- [33] Tchorzewska-Cieslak, B., Boryczko, K. & Piegdon, I. (2014). Possibilistic risk analysis of failure in water supply network. Proceedings of the European Safety and Reliability Conference (ESREL) Polish Safety & Reliabil Assoc; European Safety & Reliability Associaton Safety and Reliability: Methodology and Applications, 1473-1480.
- [34] United States Environmental Protection Agency (U.S. EPA.). Decision-Support tools for predicting the performance of water distribution and wastewater collection systems. Washington D.C.: National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency. 2006.
- [35] Water Framework Directive 2000/60/WE.
- [36] WHO (2004). Guidelines for Drinking Water Quality, 3rd ed (draft) (World Health Organization, Geneva)
- [37] WHO (2005). Water Safety Plans. Managing drinking-water quality from catchment to consumer, Water, Sanitation and Health. Protection and the Human Environment World Health Organization, Geneva, 2005.
- [38] Windle, G. (2010). What is resilience? A review and concept analysis. Reviews in Clinical Gerontology, 1-18. doi:10.1017/S0959259810000420.
- [39] www. ec.europa.eu/info/better-regulationguidelines-and-toolbox_en
- [40] www.ec.europa.eu/info/law/betterregulation/initiatives/com-2017-753_en
- [41] EC COM (2017), “Proposal for a Directive of the European Parliament and of the Council on the quality of water intended for human consumption (recast)”. (Text with EEA relevance) {SWD(2017) 448 final} - {SWD(2017) 449 final} - {SWD(2017) 451 final}. COM (2017) 753 final, 2017/0332 (COD).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c3168e97-ca5d-4657-bd7d-717c525bb327