PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Fuzzy adaptive Kalman filter for the drive system with an elastic coupling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper issues related to the design of a robust adaptive fuzzy estimator for a drive system with a flexible joint is presented. The proposed estimator ensures variable Kalman gain (based on the Mahalanobis distance) as well as the estimation of the system parameters (based on the fuzzy system). The obtained value of the time constant of the load machine is used to change the values in the system state matrix and to retune the parameters of the state controller. The proposed control structure (fuzzy Kalman filter and adaptive state controller) is investigated in simulation and experimental tests.
Słowa kluczowe
Rocznik
Strony
251--265
Opis fizyczny
Bibliogr. 24 poz., wz., rys.
Twórcy
  • Institute of Electrical Machines, Drives and Measurements Wroclaw University of Technology Smoluchowskiego 19, 50-372 Wrocław, Poland
autor
  • Institute of Electrical Machines, Drives and Measurements Wroclaw University of Technology Smoluchowskiego 19, 50-372 Wrocław, Poland
Bibliografia
  • [1] Valenzuela M.A., Bentley J.M., Lorenz R.D., Computer-Aided Controller Setting Procedure forPaper Machine Drive Systems. IEEE Transaction on Industrial Electronics 45(2): 638-650 (2009).
  • [2] Molinas M., Suul J.A., Undeland T., Extending the Life of Gear Box in Wind Generators by SmoothingTransient Torque With STATCOM. IEEE Trans. on Industrial Electronics 57(2): 476-484 (2010).
  • [3] Hori Y., Sawada H., Chun Y., Slow resonance ratio control for vibration suppression and disturbancerejection in torsional system. IEEE Transaction on Industrial Electronics 46(1): 162-168 (1999).
  • [4] Orlowska-Kowalska T., Kaminski M., Szabat K., Implementation of a Sliding-Mode ControllerWith an Integral Function and Fuzzy Gain Value for the Electrical Drive With an Elastic Join. IEEE Transaction on Industrial Electronics 57(4): 1309-1317 (2010).
  • [5] Szabat K., Orlowska-Kowalska T., Dybkowski M., Indirect Adaptive Control of Induction MotorDrive System With an Elastic Coupling. IEEE Transaction on Industrial Electronics 56(10): 4038-404 (2009).
  • [6] Deur J., Peric N., Analysis of speed control system for electrical drives with elastic transmission. Proc. ISIE, Bled, Slovenia, 2: 624-630 (1999).
  • [7] Talole S.E., Kolhe J.P., Phadke S.B., Extended-State-Observer-Based Control of Flexible-Joint SystemWith Experimental Validation. IEEE Transaction on Industrial Electronics 57(4): 1411-1419 (2010).
  • [8] Muszynski R., Deskur J., Damping of Torsional Vibrations in High-Dynamic Industrial Drives. IEEE Trans. on Industrial Electronics 57(2): 544-552 (2010).
  • [9] Pacas J., John A., Eutebach T., Automatic identification and damping of torsional vibrations inhigh-dynamic-drives. International Symposium on Industrial Electronics ISIE, Pueblo (2000).
  • [10] Serkies. P., Szabat K., Application of the hybrid predictive controller for the two-mass drive systemwith friction. Scientific Papers of Institute of Electrical Machines Drives and Measurements No. 65 Studies and Research 31: 330-3340 (2011) (in Polisch).
  • [11] Abeygunawardhana P.K.W., Murakami T., Vibration Suppression of Two-Wheel Mobile ManipulatorUsing Resonance-Ratio-Control-Based Null-Space Control. IEEE Trans. on Industrial Electronics 57(12): 4137-4146 (2010).
  • [12] Bang J.S., Shim H., Park S. K., Seo J.H., Robust Tracking and Vibration Suppression for a Two-Inertia System by Combining Backstepping Approach With Disturbance Observer. IEEE Trans. on Industrial Electronics 59(7): 3197-3206 (2010).
  • [13] Vasak M., Baotic M., Petrovic I., Peric N., Hybrid Theory-Based Time-Optimal Control of anElectronic Throttle. Trans. on Industrial Electronics 54(3): 1483-1494 (2007).
  • [14] Vasak M., Peric N., Robust invariant set-based protection of multi-mass electrical drives. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 29(1): 205-220 (2010).
  • [15] Szabat K., Orłowsk-Kowalska T., Vibration Suppression in a Two-Mass Drive System Using PISpeed Controller and Additional Feedbacks-Comparative Study. IEEE Trans. on Industrial Electronics 54(2): 1193-1206 (2007).
  • [16] Serkies P., Comparison of dynamic properties of position control structures in two-mass drive withthe classic cascade controller and FDC controller. Scientific Papers of Institute of Electrical Machines Drives and Measurements No. 65 Studies and Research 31: 330-3340 (2011) (in Polisch).
  • [17] Hace A., Jezernik K., Sabanovic A., SMC with disturbance observer for a linear belt drive. IEEE Trans. Ind. Electronics 54(6): 3402-3412 (2007).
  • [18] Serkies P., Szabat K., Design of the robust model predictive speed controller for the drive systemwith elastic joint. Electrical Review 87(7): 115-118 (2011) (in Polish).
  • [19] Ogata K., Modern Control Engineering. Prentice Hall (2002).
  • [20] Caux S., Carriere S., Fadel M., Sareni B., Motion Control of Elastic Joint Based on Kalman Optimizationwith Evolutionary Algorithm. In IEEE Industry Applications Society Annual Meeting, Houston, Texas, USA (2009).
  • [21] Szabat K., Orlowska-Kowalska T., Performance Improvement of Industrial Drives With MechanicalElasticity Using Nonlinear Adaptive KF. IEEE Trans. Ind. Electronics. 55(3): 1075-1084 (2008).
  • [22] Najjaran H., Goldenberg A., Real-time motion planning of an autonomous mobile manipulatorusing a fuzzy adaptive KF. Robotics and Autonomous Systems 55: 96-106(2007).
  • [23] Kamiński M., Orlowska-Kowalska T., FPGA Realization of the Neural Speed Estimator for theDrive System with Elastic Coupling. 35th Annual Conference of IEEE Industrial Electronics Lisboa, Portugal (2009).
  • [24] Orlowska-Kowalska T., Kaminski M., Application of the OBD method for optimization of neuralstate variable estimators of the two-mass drive system. Neurocomputing 72(13-15): 3034-3045 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c315ab84-7c8d-4369-a50b-07b4ce842e56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.