PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of COVID-19 and cancer data using new half-logistic generated family of distributions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We focus on a specific sub-model of the proposed family that we call the new half logistic-Fréchet. This sub-model stems from a new generalisation of the half-logistic distribution which we call the new half-logistic-G. The novelty of proposing this new family is that it does not include any additional parameters and instead relies on the baseline parameter. Standard statistical formulas are used to show the forms of the density and failure rate functions, ordinary and incomplete moments with generating functions, and random variate generation. The maximum likelihood estimation procedure is used to estimate the set of parameters. We conduct a simulation analysis to ensure that our calculations are converging with lower mean square error and biases. We use three real-life data sets to equate our model to well-established existing models. The proposed model outperforms the well-established four parameters beta Fréchet and exponentiated generalized Fréchet for some real- -life results, with three parameters such as half-logistic Fréchet, exponentiated Fréchet, Zografos–Balakrishnan gamma Fréchet, Topp–Leonne Fréchet, and Marshall–Olkin Fréchet and two-parameter classical Fréchet distribution.
Rocznik
Strony
71--95
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Department of Statistics, The Islamia University of Bahawalpur, Punjab, Pakistan
  • Department of Social and Allied Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Punjab, Pakistan
  • Department of Statistics, The Islamia University of Bahawalpur, Punjab, Pakistan
  • Department of Statistics, The Islamia University of Bahawalpur, Punjab, Pakistan
Bibliografia
  • [1] Abbas, S., Taqi, S. A., Mustafa, F., Murtaza, M., and Shahbaz, M. Q. Topp-Leone inverse Weibull distribution: Theory and application. European Journal of Pure and Applied Mathematics 10, 5 (2017), 1005–1022.
  • [2] Al-Marzouki, S., Jamal, F., Chesneau, C., and Elgarhy, M. Topp-Leone odd Fréchet generated family of distributions with applications to COVID-19 data sets. Computer Modeling in Engineering & Sciences 125, 1 (2020), 437–458.
  • [3] Alzaatreh, A., Lee, C., and Famoye F. A new method for generating families of continuous distributions. Metron 71, 1 (2013), 63–79.
  • [4] Barreto-Souza, W., Cordeiro, G. M., and Simas, A. B. Some results for beta Fréchet distribution. Communications in Statistics - Theory and Methods 40, 5 (2011), 798–811.
  • [5] Cordeiro, G. M., Alizadeh, M., and Diniz Marinho, P. R. The type I half-logistic family of distributions. Journal of Statistical Computation and Simulation 86, 4 (2016), 707–728.
  • [6] Cordeiro, G. M., Ortega, E. M. M., and da Cunha, D. C. C. The exponentiated generalized class of distributions. Journal of Data Science 11, 1 (2013), 1–27.
  • [7] da Silva, R. V., de Andrade, T. A. N., Maciel, D. B. M., Campos, R. P. S., and Cordeiro, G. M. A new lifetime model: The gamma extended Fréchet distribution. Journal of Statistical Theory and Applications 12, 1 (2013), 39–54.
  • [8] Fréchet, R. M. On the probability law of maximum deviation. Annales de la Société Polonaise de Mathématique 6 (1927), 93–116, (in French).
  • [9] Granzotto, D. C. T., Louzada, F., and Balakrishnan, N. Cubic rank transmuted distributions: inferential issues and applications. Simulation 87, 14 (2017), 2760–2778.
  • [10] Gupta, R. D., and Kundu, D. Exponentiated exponential family: An alternative to gamma and Weibull distributions. Biometrical Journal 43, 1 (2001), 117–130.
  • [11] Kotz, S., and Nadarajah, S. Kotz-Type Distribution. In Encyclopedia of Statistical Sciences, N. Balakrishnan, N. L. Johnson and S. Kotz, Eds., 2nd. ed. John Wiley & Sons, Ltd, 2006.
  • [12] Krishna, E., Jose, K. K., and Ristić, M. M. Applications of Marshall–Olkin Fréchet distribution. Communications in Statistics - Simulation and Computation 42, 1 (2013), 76–89.
  • [13] Lee E. T., and Wang J. W. Statistical Methods for Survival Data Analysis. Vol. 476. John Wiley & Sons, 2003.
  • [14] Lehmann, E. L. The power of rank tests. Annals of Mathematical Statistics 24, 1 (1953), 23–43.
  • [15] Marshall, A. W., and Olkin, I. A new method for adding parameters to a family of distributions with application to the exponential and Weibull families. Biometrika 84, 3 (1997), 641–652.
  • [16] Mudholker, G. S., and Srivastava, D. K. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions of Reliability 42, 2 (1993), 299–302.
  • [17] Nadarajah, S., and Gupta, A. K. The beta Fréchet distribution. Far East Journal of theoretical Statistics 14, 1 (2004), 15–24.
  • [18] Nadarajah, S., and Kotz, S. The exponentiated type distributions. Acta Applicandae Mathematica 92, 2 (2006), 99–111.
  • [19] Shaw, W. T., and Buckley, I. R. C. The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map, 2009. Available from https://arxiv.org/abs/0901.0434.
  • [20] Tahir, M. H., Hussain, M. A., and Cordeiro, G. C. A new flexible generalized family for constructing many families of distributions. Journal of Applied Statistics 23 (2021), 1615–1635.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c30ce6dc-07f9-4244-b024-537964afcd22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.