
Jan Długosz University in Częstochowa

Scientific Issues, Mathematics XIV, Częstochowa 2009

DERIVATIVE OF A FUNCTION

AT A POINT AND INTEGRAL

BY PROFESSOR IGOR KLUVÁNEK
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Place A. Hlinka 56, 034 01 Ružomberok, Slovakia
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Abstract

Professor Igor Kluvánek had developed a unique course of calculus (mathemati-

cal analysis) to teach students the differential and integral calculus. In the present

paper, this concept is briefly outlined. The notion of derivative is introduced via con-

tinuity. The definition of integral given in this article applies an idea of Archimedes.

1. Introduction

Professor Igor Kluvánek was an important Slovak mathematician. He pre-
pared a new course of mathematical analysis during his 23 years stay at the
Flinders University in Adelaide, South Australia. The goal of his course was
to clarify and simplify the calculus teaching for students. In this way, we
can explain the notions of calculus for wide scale people. Led by this idea,
Professor Kluvánek prepared a course of mathematical analysis which was
oriented to explain, to make easier understanding and to develop calculus
terms. His course was not published up that time and so the co-workers
at the Department of Mathematics at Pedagogical Faculty of The Catholic
University in Ružomberok completed compiled sources of Kluvánek. The
brother of Igor Kluvánek, Professor Pavol Kluvánek helps to perform this
research work. There was published the first and second parts of the course
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of mathematical analysis. The third part will be published at the end of this
year. In this article we will show the definitions of derivative and integral
used by Professor Igor Kluvánek.

2. Differentiation and derivative of a function at a point

Kluvánek introduces the notion of the differentiation of a function at a point
via continuity:

A function f is said to be differentiable at a point x if there exists a
function ϕ, continuous at 0, such that f(x + u) − f(x) = ϕ(u)u for every
u in a neighbourhood of 0. The value ϕ(0) is called the derivative of the
function f at the point x.

More information about advantages of this type of definition can be
found in [11]. The most important advantage of the Kluvánek conception
is the unique art of definition of the key notions of the calculus, which the
students can understand better. Following [3], we show suitability symbolism
for the derivative:

“We can find in the better textbooks on calculus that the symbols dy/dx
and f ′ (x) can change each other. One can often find also the third symbol
Df(x).

Equation f ′ (x) = Df(x) does not produce any problems. Under some
restrictions, it is possible to change the operator of the differentiation and
in this case we can use the both symbols f ′ (x) and Df(x). I don’t believe
that the author of the appendix F (see [3]) knows about what he writes.

This author allows me to write

f ′ (z) =
dy

dz
= Dz2 = 2z

instead of

f ′ (x) =
dy

dx
= Dx2 = 2x.

He can have a significant objections if I write

f ′ (3) =
dy

d3
= D9 = 6.

In these examples we see a problem which we can have in different
contexts. If there is a difference between f ′ (x) and dy/dx only in the choice
of symbol similar to the difference between f ′ (x) and Df(x), it will be
hard to explain, why some authors in some contexts use the symbol dy/dx,
however some of them prefer other symbols.”
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3. Differentiation of composite function

Kluvánek criticized the proof in the course of pure mathematics of
G.H. Hardy (see [1]), because Hardy used the limits instead of continu-
ity. This confusion is copied by some authors in their calculus textbooks.
We show now, how it is possible to avert this confusion (see [4]):

Theorem 1. If a function f is differentiable at a point x and a function g
is differentiable at the point y = f(x), then the composite function h = g ◦ f
is differentiable at the point x and Dh(x) = Dg(y)Df(x).

Proof. Since f is differentiable at x, there exists a function ϕ continuous at
0 such that ϕ(0) = Df(x) and

f(x+ u) − f(x) = ϕ(u)u

for all u in a neighbourhood of 0. Since g is differentiable at y, there exists
a function ψ continuous at 0 such that ψ(0) = Dg(y) and

g(x+ v) − g(x) = ψ(v)v

for all v in a neighbourhood of 0.
Hence,

h(x+ u) − h(x) = g (f(x+ u)) − g (f(x)) =

= g (f(x) + (f(x+ u) − f(x))) − g (f(x)) = g (f(x) + ϕ(u)u) − g (y) =

= ψ (ϕ(u)u)ϕ(u)u

for every u in a neighbourhood of 0.
Let

χ(u) = ψ (ϕ(u)u)ϕ(u)u

for every u such that ϕ(u)u belongs to the domain of the function ψ. By
properties of continuous functions, the function χ is continuous at 0 and our
calculation shows that

h(x+ u) − h(x) = χ(u)u

for every u in a neighbourhood of 0. Hence, the function h is differentiable
at x and Dh(x) = χ(0) = ψ(0)ϕ(0) = Dg(y)Df(x).
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4. Introduction to the notion of integral

Example 1. During the first 19 weeks of the financial year, the wage of an
employee was 186 Euro weekly. Then he was promoted and had 203.50 Euro
weekly. A month before the end of the financial year, due to general salaries
and wages increase, his wage was increased to 211.30 Euro weekly. This last
month represents 4.4 working weeks (four full weeks and two working days,
each representing 0.2 of a working week). Indicate how the weekly wage
depends on time.

Solution:

If we want to introduce a function indicating how the weekly wage of the
employee depended on time, we represent the year by interval [0; 52], taking
a week for a unit of time. Then the function f representing the dependence
of the wage on time can be defined in the following manner:

f(t) =







186 for t ∈ [0; 19],
203.50 for t ∈ (19; 47.6),
211.30 for t ∈ [47.6; 52].

If χA(t) is a characteristic function of the set A, then we have

f(t) = 186 · χ[0;19](t) + 203.50 · χ(19;47.6)(t) + 211.30 · χ[47.6;52](t)

for every t ∈ [0; 52].
Now we can ask what was the average (mean) wage of that employee

during the year or what was his total income from wages that year? Clearly,
his total income was

186 · 19 + 203.50 · (47.6 − 19) + 211.30 · (52 − 47.6) = 10 283.82 Euro.

His average wage was

10283.82

52
= 197.76 Euro

per week (rounded to whole cents). In this example, it is easy to see that
the function f is a step function and it does not matter, if we use open and
bounded intervals for calculating the total income.

Here we have defined c1 = 186; c2 = 203.50; c3 = 211.30; J1 = [0; 19],
J2 = [19; 47.6], J3 = [47.6; 52]. If the number b − a = λ(J) is the length of
the interval J = [a; b], then the total income has the form

c1λ(J1) + c2λ(J2) + c3λ(J3) =

3
∑

j=1

cjλ(Jj).
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This number is also the area of the set S = {(t, y) : t ∈ [0; 52], 0 ≤ y ≤ f(t)}.
Therefore, it is possible to express the step function by the formula

f(x) =

n
∑

j=1

cjχJj(x)

for every x in an interval I, where n is a positive integer, cj are arbi-

trary numbers and Jj some bounded intervals

(

n
⋃

j=1
Jj = I

)

for every j =

1, 2, 3, . . . , n. In each case, the number

n
∑

j=1

cjλ(Jj)

is called the integral of the function f .

Example 2. Now, we try to calculate the area of the set

S = {(x, y) : x ∈ I, 0 ≤ y ≤ f(x)},

where f is some continuous function and non-negative in the (compact)
interval I.

Solution: If the function f is not constant in the interval I, then the set S
is not equal to the union of a finite number of rectangles. Nevertheless, with
the exception of some points on the boundary, which may be disregarded
from the point of view when calculating the area, this set can be covered by
an infinite sequence of non-overlapping rectangles as illustrated in Figure 1.
The sum of the areas of these rectangles is equal to the area of S.

Figure 1
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That is, there exist intervals Jj ⊂ I and numbers cj , j = 1, 2, 3, . . . , such
that

f(x) =
∞
∑

j=1

cjχJj (x) (1)

for every x ∈ I, and the area of set S is equal to the number

∞
∑

j=1

cjλ(Jj). (2)

The class of functions to which the procedure can be applied is much larger
than in the case when cj ≥ 0 for every j = 1, 2, 3, . . . . In particular, we
now may consider functions with both positive and negative values. Conse-
quently, we can also calculate the integral (2) of a function f in a host of
situations, when it has an interpretation different from that of the area of a
planar figure. Of course, if so desired, the integral of a function in an interval
I can always be interpreted “geometrically” as a difference of the areas of the
sets
S+ ={(x, y) : x ∈ I, 0 ≤ y ≤ f(x)} and S− ={(x, y) : x ∈ I, f(x) ≤ y ≤ 0}.

5. Definition of the integral

To obtain a workable definition of integral for a large enough class of func-
tions, it suffices to require the existence of the sum (2) and to note that
this sum is then independent on the particular choice of the numbers cj and
intervals Jj , j = 1, 2, 3, . . . , used in the representation (1) of the function f .

Definition 1. A function f is said to be integrable on the interval I, when-
ever there exist numbers cj and bounded intervals Jj ⊂ I, j = 1, 2, 3, . . .
such that

∞
∑

j=1

|cj |λ(Jj) <∞ (3)

and the equality

f(x) =

∞
∑

j=1

cjχJj (x)

holds for every x ∈ I such that

∞
∑

j=1

|cj |χJj(x) <∞ . (4)
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Now we shall introduce the notions of a virtually primitive function.
We shall use the term a condition P is fulfilled nearly everywhere. This

means that the set of points for which the condition P is not fulfilled is at
most countable.

Definition 2. A function F is said to be virtually primitive to a function
f in an interval E if the function F is continuous in the interval E and
F ′(x) = f(x) nearly everywhere in E.

In this definition, we do not require E to be a compact interval, it can
also be an unbounded interval.

We shall prove that if a function f is integrable on the interval I, then
the sum (2) is the same for every choice of the numbers cj and intervals
Jj , j = 1, 2, 3, . . . , satisfying the condition (3) such that (1) holds for every
x ∈ I for which the inequality (4) does hold.

The next three theorems, which are technical ones, are useful in the
proof that the definition of the Kluvánek integral is correct.

Theorem 2. Let n be a positive integer, cj non-negative numbers, Jj bound-
ed subintervals of I, j = 1, 2, 3, . . . , n, dk non-negative numbers and Kk

bounded intervals, k = 1, 2, 3, . . . , such that

n
∑

j=1

cjχJj (x) ≤
∞
∑

k=1

dkχKk
(x) (5)

for every x ∈ (−∞,∞). Then

n
∑

j=1

cjλ(Jj) ≤
∞
∑

k=1

|dk|λ(Kk). (6)

Proof. It follows from the assumptions that a is a number not greater than
the left end-point and b is a number not less than the right end-point of each
of the intervals Jj , j = 1, 2, 3, . . . , n. Let Fj be a function virtually primitive
in (−∞,∞) to the function cjχJj such that Fj(a) = 0, j = 1, 2, 3, . . . , n,
and Gk the function virtually primitive to dkχKk

such that Gk(a) = 0,
k = 1, 2, 3, . . . Since cjλ (Jj) = Fj(b), j = 1, 2, 3, . . . , n, if we prove that

n
∑

j=1

Fj(b) ≤
∞
∑

k=1

Gk(b),

then (6) will follow.



44 Ján Gunčaga

Suppose to the contrary that

∞
∑

k=1

Gk(b) <
n
∑

j=1

Fj(b). (7)

We shall obtain a contradiction.
First, note that 0 ≤ Gk(x) ≤ Gk(b) for every x ∈ [a, b] and every

k = 1, 2, 3, . . . Hence, by (7), the sequence of functions {Gk}∞n=1 is uniformly
convergent in the interval [a, b]. Let

F (x) =
n
∑

j=1

Fj(x) and G(x) =
∞
∑

k=1

Gk(x)

for every x ∈ [a, b]. The functions Fj(x), j = 1, 2, 3, . . . , n, and Gk(x),
k = 1, 2, 3, . . . , on the interval [a, b] are continuous. Therefore, the functions
F (x) and G(x) are also continuous in the interval [a, b] and, of course, F (a) =
G(a) = 0. Let

k =
F (b) −G(b)

2(b− a)
and q =

F (b) −G(b)

2
.

By (7), k > 0 and q > 0. If t ∈ (0, k), let

ht(x) = F (x) −G(x) − t(x− a) − q

for every x ∈ [a, b]. Then, for every t ∈ (0, k), ht is a function continuous in
the interval [a, b] such that ht(a) < 0 and ht(b) > 0. Let ξ(t) be its maximal
root in the interval (a, b). That is ht(ξ(t)) = 0 and ht(y) > 0 for every
y ∈ (ξ(t), b).

The function ξ(t), t ∈ (0, k), is (strictly) increasing, because, if
0 < t < s < k, then

hs(ξ(t)) = hs(ξ(t)) − ht(ξ(t)) = (t− s)(ξ(t) − a) < 0

and, hence, the largest root, ξ(s), of the function hs is greater than ξ(t).
So, this function is injective. Since its domain, (0, k), is not a countable set,
the set of its values {ξ(t); t ∈ (0, k)} is not countable either. But the set of
end-points of all intervals Jj , j = 1, 2, 3, . . . , n and Kk, k = 1, 2, 3, . . . , is
countable. So, there is a number t ∈ (0, k) such that ξ(t) is not an end-point
of any of intervals Jj , j = 1, 2, 3, . . . , n and Kk, k = 1, 2, 3, . . . Let t be such
a number and x = ξ(t) the corresponding point of the interval (a, b). Then
ht(x) = 0 and ht(y) > 0 for every y ∈ (x, b). That is,

F (x) −G(x) = t(x− a) − q and F (y) −G(y) > t(y − a) − q



Derivative of a function at a point and integral 45

for every y ∈ (x, b). Consequently,

F (y) − F (x)

y − x
− G(y) −G(x)

y − x
> t (8)

for every y ∈ (x, b].
On the other hand, since x is not an end-point of any of the intervals Jj

and Kk, each function Fj and Gk is differentiable at x and F ′
j(x) = cjχJj(x)

for j = 1, 2, 3, . . . , n, and G′
k(x) = dkχKk

(x) for k = 1, 2, 3, . . . So, by (5),

F ′(x) =
n
∑

j=1

F ′
j(x) ≤

∞
∑

k=1

G′
k(x).

Since t > 0, there exists a positive integer m such that

F ′(x) ≤
∞
∑

k=1

G′
k(x) <

m
∑

k=1

G′
k(x) + t.

Therefore,

lim
y→x+

(

F (y) − F (x)

y − x
−

m
∑

k=1

Gk(y) −Gk(x)

y − x

)

< t.

From the properties of limits, we have that there exists a point y in the
interval [x, b] such that

F (y) − F (x)

y − x
−

m
∑

k=1

Gk(y) −Gk(x)

y − x
< t. (9)

Now, Gk(y)−Gk(x) > 0 for every k = m+1,m+2, . . . , because the functions
Gk are non-decreasing. Hence,

G(y) −G(x)

y − x
=

∞
∑

k=1

Gk(y) −Gk(x)

y − x
≥

m
∑

k=1

Gk(y) −Gk(x)

y − x
.

So, (9) contradicts (8).

Theorem 3. Let cj and dj be non-negative numbers and let Jj and Kj be
subintervals of I, j = 1, 2, 3, . . . such that

∞
∑

j=1

cjλ(Jj) <∞,

∞
∑

j=1

djλ(Kj) <∞
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and
∞
∑

j=1

cjχJj(x) =

∞
∑

j=1

djχKj(x) (10)

for every x for which

∞
∑

j=1

cjχJj(x) <∞ and

∞
∑

j=1

djχKj (x) <∞.

Then
∞
∑

j=1

cjλ(Jj) =

∞
∑

j=1

djλ(Kj). (11)

Proof. Let ε be an arbitrary positive number. Let n be a positive integer
such that ∞

∑

j=n+1

cjλ(Jj) <
ε

2
.

Then
n
∑

j=1

cjχJj(x) ≤
∞
∑

j=1

djχKj (x) +
∞
∑

j=n+1

cjχJj (x)

for every x ∈ (−∞,∞) with no exception.
By Theorem 2,

n
∑

j=1

cjλ(Jj) ≤
∞
∑

j=1

djλ(Kj) +

∞
∑

j=n+1

cjλ(Jj) <

∞
∑

j=1

djλ(Kj) +
ε

2
.

Hence,
∞
∑

j=1

cjλ(Jj) =
n
∑

j=1

cjλ(Jj) +
∞
∑

j=n+1

cjλ(Jj) <

<
∞
∑

j=1

djλ(Kj) +
ε

2
+

∞
∑

j=n+1

cjλ(Jj) <
∞
∑

j=1

djλ(Kj) + ε.

Because the inequality between the first and the last terms holds for
every positive ε, we have

∞
∑

j=1

cjλ(Jj) ≤
∞
∑

j=1

djλ(Kj).

The reverse inequality can be proved by a symmetric argument. Hence
(11) holds.
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Recall that nonnegative x+ and nonpositive x− parts of a number x are
defined by

x+ =

{

x if x ≥ 0,

0 if x < 0;

x− =

{

−x if x < 0,

0 if x ≥ 0.

Then: x+ ≥ 0, x− ≥ 0, x = x+−x− and |x| = x++x− for any number x.

Theorem 4. Let cj and dj be numbers and let Jj and Kj be subintervals of
I for every j = 1, 2, 3, . . . such that

∞
∑

j=1

|cj |λ(Jj) <∞,

∞
∑

j=1

|dj |λ(Kj) <∞. (12)

If
∞
∑

j=1

cjχJj(x) =
∞
∑

j=1

djχKj (x)

for every x ∈ I for which

∞
∑

j=1

|cj |χJj (x) <∞ and
∞
∑

j=1

|dj |χKj (x) <∞,

then ∞
∑

j=1

cjλ(Jj) =

∞
∑

j=1

djλ(Kj).

Proof. The conditions (12) imply:

∞
∑

j=1

c+j λ(Jj) <∞,

∞
∑

j=1

c−j λ(Jj) <∞,

∞
∑

j=1

d+
j λ(Kj) <∞,

∞
∑

j=1

d−j λ(Jj) <∞.

From condition ∞
∑

j=1

cjχJj(x) =
∞
∑

j=1

djχKj(x),

we have

∞
∑

j=1

c+j
χ
Jj (x) −

∞
∑

j=1

c−j χJj(x) =

∞
∑

j=1

d+
j
χ
Kj(x) −

∞
∑

j=1

d−j χKj(x).
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That is

∞
∑

j=1

c+j
χJj (x) +

∞
∑

j=1

d−j χKj(x) =

∞
∑

j=1

d+
j
χKj(x) +

∞
∑

j=1

c−j χJj(x)

for every x such that both sides represent a number (not ∞). By Theorem
3,

∞
∑

j=1

c+j λ(Jj) +
∞
∑

j=1

d−j λ(Kj) =
∞
∑

j=1

d+
j λ(Kj) +

∞
∑

j=1

c−j λ(Jj);

∞
∑

j=1

c+j λ(Jj) −
∞
∑

j=1

c−j λ(Jj) =
∞
∑

j=1

d+
j λ(Kj) −

∞
∑

j=1

d−j λ(Kj);

∞
∑

j=1

cjλ(Jj) =
∞
∑

j=1

djλ(Kj).

Now we are able to proceed with the definition of integral:

Definition 3. Let f be a function integrable in the interval I. Let cj be
numbers and let Jj ⊂ I be intervals, j = 1, 2, 3, . . . , satisfying the condition

∞
∑

j=1

|cj |λ(Jj) <∞,

such that the equality

f(x) =
∞
∑

j=1

cjχJj (x)

holds for every x ∈ I meeting the condition

∞
∑

j=1

|cj |χJj(x) <∞.

Then the number
∞
∑

j=1

cjλ(Jj)

is called the integral of f in the interval I; it will be denoted by
∫

I

f(x) dx.
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Clearly, for every constant function f(x) = β in the interval [a, b], we
have

b
∫

a

f(x) dx = β(b− a).

6. Conclusions

This article illustrates only a small part of the calculus concept which was
prepared by Professor Igor Kluvánek. His method, from the viewpoint of the
notion technique, is unique and this method is not a copy of some existing
calculus textbooks. He tries to remove the failings by the introduction of
calculus notions in the courses for students. This confirms his words: “The
process of explaining, simplifying the notions from the beginning of differ-
ential calculus is stopped at some level, however there were connected only
some aspects of differential calculus. According to general meaning, all things
in this matter had been realised by Cauchy, Bolzano, Weierstrass and their
contemporary mathematicians.” This is only partially right as it shows the
calculus concept prepared by Professor Igor Kluvánek.

The definition of integral given in this article applies an idea of Archimedes.
The most effective method for the calculation of integrals is the one which
is based on the differential and integral calculus.

It is well known that the Dirichlet function (the characteristic function
of the set of rational numbers) is not integrable in the Riemann sense. It
is possible to show that this function is integrable in the sense of Kluvánek
and the value of this integral is zero. In fact, let Q ∩ [a, b] = {qj : j ∈ N}.
Let further

J2j = {qj}
and let J2j−1 be any of subintervals of [0, 1]. Therefore, the Dirichlet function
D : [0, 1] −→ R can be represented in the form

D(x) =
∞
∑

j=1

cj · χJj(x),

where c2j = 1 and c2j−1 = 0. Hence, the integral of it equals 0.
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učitele, Úst́i nad Labem, pp. 85-89, 2004.


