Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Coppermaking from sulfide concentrates entails two major steps: smelting and converting. In continuous direct-to-copper smelting process these two steps are combined into one. The principal advantages of this process are: isolation of SO2 emission to a single, continuous, SO2-rich gas stream, minimization of energy consumption and minimization of capital and operating costs. Disadvantages of the process are that about 25% of the Cu entering a direct-to-copper smelting furnace ends up dissolved in the slag (when compared with < 10% in traditional Peirce-Smith converting) and the cost of recovering this Cu is significant. Decopperization process is based on the reduction of cuprous oxide and other metals, mainly lead and iron, in the liquid state in an electric furnace in the presence of coke and technological additives. This paper presents the results of laboratory tests on flash smelting slag leaching with sulfuric acid solutions. Hydrometallurgical treatment of the slag could be an alternative route to the presently used way of processing. The influence of a number of leaching parameters such as sulfuric acid concentration, amount of H2O2 added, liquid to solid phase (l/s) parameter and process temperature on the copper leaching efficiency was investigated. Under optimized process conditions, 95.6% of the copper contained in the original sample of slag was transferred into a solution. The experimental results obtained in the study were supplemented with the analysis of the kinetics of the copper leaching process from the flash smelting slag. The commonly known from the literature diffusion model and chemical reaction model were used. The activation energy of copper leaching from flash smelting slag was estimated in the range from 12.77 to 17.34 kJ/mol.
Czasopismo
Rocznik
Tom
Strony
art. no. e29, 2023
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- Department of Physical Chemistry and Metallurgy of Non‑Ferrous Metals, Faculty of Non‑Ferrous Metals, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30‑059 Kraków, Poland
autor
- Department of Metal Working and Physical Metallurgy of Non‑Ferrous Metals, Faculty of Non‑Ferrous Metals, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30‑059 Kraków, Poland
autor
- Department of Physical Chemistry and Metallurgy of Non‑Ferrous Metals, Faculty of Non‑Ferrous Metals, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30‑059 Kraków, Poland
autor
- Department of Materials Science and Engineering of Non‑Ferrous Metals, Faculty of Non‑Ferrous Metals, AGH University of Science and Technology, Al. Mickiewicza 30, 30‑059 Kraków, Poland
autor
- Department of Physical Chemistry and Metallurgy of Non‑Ferrous Metals, Faculty of Non‑Ferrous Metals, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30‑059 Kraków, Poland
Bibliografia
- 1. KGHM Polska Miedź Co. The monography. 2nd ed., Lubin; 2007.
- 2. Siwiec G, Sozańska M, Blacha L, Smalcerz A. Behaviour of iron during reduction of slag obtained from copper flash smelting. Metalurgija. 2015;54:113-5.
- 3. Mateuszuk S. Selected issues of materials milling in vertical roller-mills. Sci Works Inst Ceram Build Mater. 2012;9:113-24.
- 4. Li Y, Guan J. Life cycle assessment of recycling copper process from copper-slag. In: 2009 International conference on energy and environment technology, ICEET. Pp. 198-201.
- 5. Gargul K, Boryczko B, Bukowska A, Hołda A, Małecki S, Tora B. Behavior of copper and lead during mineralurgical and hydro-metallurgical processing of flash smelting slag. Archiv Civ Mech Eng. 2021;21:26. https://doi.org/10.1007/s43452-021-00184-9.
- 6. Coursol P, Mackey PJ, Díaz CM. Energy consumption in copper sulphide smelting. In: Proceedings of copper 2010, vol. 2-pyrometallurgy I (Clausthal-Zellerfeld: GDMB, 2010), pp. 649-668.
- 7. Araya G, Toro N, Castillo J, Guzmán D, Guzmán A, Hernández P, Jeldres RI, Sepúlveda R. Leaching of oxide copper ores by addition of weak acid from copper smelters. Metals. 2020;10:627. https://doi.org/10.3390/met10 050627.
- 8. Kang C-U, Ji S-E, Pabst T, Choi K-W, Khan MA, Kumar R, Krishnaiah P, Han Y, Jeon B-H, Kim D-H. Copper extraction from oxide ore of almalyk mine by H2SO4 in simulated heap leaching: effect of particle size and acid concentration. Minerals. 2021;11:1020. https://doi.org/10.3390/min11091020.
- 9. Razavizadeh H, Afshar MR. Leaching of Sarcheshmeh copper oxide ore in sulfuric acid solution. Min Metall Explor. 2008;25:85-90. https://doi.org/10.1007/BF03403391.
- 10. Antonijević MM, Dimitrijević MD, Stevanović ZO, Serbula SM, Bogdanovic GD. Investigation of the possibility of copper recovery from the flotation tailings by acid leaching. J Hazard Mater. 2008;158:23-34. https://doi.org/10.1016/j.jhazm at.2008.01.063.
- 11. Han B, Altansukh B, Haga K, Stevanović Z, Jonović R, Avramović L, Urosević D, Takasaki Y, Masuda N, Ishiyama D, et al. Development of copper recovery process from flotation tailings by a combined method of high-pressure leaching-solvent extraction. J Hazard Mater. 2018;352:192-203. https://doi.org/10.1016/j.jhazmat.2018.03.014.
- 12. Andrade DF, Castro JP, Garcia JA, Machado RC, Pereira-Filho ER, Amarasiriwardena D. Analytical and reclamation technologies for identification and recycling of precious materials from waste computer and mobile phones. Chemosphere. 2021;286: 131739. https://doi.org/10.1016/j.chemosphere.2021.131739.
- 13. Ippolito NM, Medici F, Pietrelli L, Piga L. Effect of acid leaching pre-treatment on gold extraction from printed circuit boards of spent mobile phones. Materials. 2021;14:362. https://doi.org/10.3390/ma14020362.
- 14. Guo X, Liu J, Qin H, Liu Y, Tian Q. Recovery of metal values from waste printed circuit boards using an alkali fusion-leaching-separation process. Hydrometallurgy. 2015;156:199-205. https://doi.org/10.1016/j.hydromet.2015.06.011.
- 15. Rudnik E, Pierzynka M, Handzlik P. Ammoniacal leaching and recovery of copper from alloyed low-grade e-waste. J Mater Cycles Waste Manag. 2016;18:318-28. https://doi.org/10.1007/s10163-014-0335-x.
- 16. Okazy MA, Zewail TM, Farag HAM. Recovery of copper from spent catalyst using acid leaching followed by electrodeposition on square rotating cylinder. Alex Eng J. 2018;57:3117-26. https://doi.org/10.1016/j.aej.2017.12.001.
- 17. Małecki S, Gargul K. Low-waste recycling of spent CuO-ZnO-Al2O3 catalysts. Metals. 2018;8:177. https://doi.org/10.3390/met8030177.
- 18. Swaroopa S, Ghosh MK, Sanjay K, Mishra BK. Extraction of Cu and Cr from a spent Cu-Cr catalyst: recovery enhancement through mechanical activation. Hydrometallurgy. 2013;136:8-14. https://doi.org/10.1016/j.hydromet.2013.03.001.
- 19. Gargul K, Boryczko B, Bukowska A. Hydrometallurgical recovery of lead from direct-to-blister copper flash smelting slag. Archiv Civ Mech Eng. 2017;17:905-11. https://doi.org/10.1016/J.ACME.2017.04.004.
- 20. Gargul K, Bukowska A. Leaching of direct-to-blister copper flash smelting slag with sodium hydroxide solutions. Przemysl Chem. 2017;96:2464-6. https://doi.org/10.15199/62.2017.12.12.
- 21. Gargul K. Ammonia leaching of slag from direct-to-blister copper smelting technology. AIMS Mater Sci. 2020;7:565-80. https://doi.org/10.3934/matersci.2020.5.565.
- 22. Adebayo AO, Ipinmoroti KO, Ajayi OO. Dissolution kinetics of chalcopyrite with hydrogen peroxide in sulphuric acid. Medium Chem Biochem Eng Q. 2003;17:213-8.
- 23. Jiang T, Yang Y, Zhang B, Huang Z. Kinetics of silver leaching from manganese-silver associated ores in sulphuric acid solution in the presence of hydrogen peroxide. Metall Mater Trans B. 2002;33B:813-6. https://doi.org/10.1007/s11663-002-0064-8.
- 24. Park I, Yoo K, Alorro RD, Kim MS, Kim SK. Leaching of copper from cuprous oxide in aerated sulfuric acid. Mater Trans. 2017;58:1500-4. https://doi.org/10.2320/matertrans.M2017147.
- 25. Yoo K, Park Y, Choi S, Park I. Improvement of copper metal leaching in sulfuric acid solution by simultaneous use of oxygen and cupric ions. Metals. 2020;10:721. https://doi.org/10.3390/met10060721.
- 26. Clotilde Apua M, Madiba MS. Leaching kinetics and predictive models for elements extraction from copper oxide ore in sulphuric acid. J Taiwan Inst Chem Eng. 2021;121:313-20. https://doi.org/10.1016/j.jtice.2021.04.005.
- 27. Hait J, Jana RK, Kumar V, Sanyal SK. Some studies on sulfuric acid leaching of anode slime with additives. Ind Eng Chem Res. 2002;41:6593-9. https://doi.org/10.1021/ie020239j.
- 28. Dong L, Mazzarino I, Alexiadis A. Development of solid-fluid reaction models-a literature review. ChemEngineering. 2021;5:36. https://doi.org/10.3390/chemengineering5030036.
- 29. Chen G, Sun J, Yang H, Ma P, Gao S. Rapid atmospheric leaching of chalcopyrite using a novel reagent of trichloroisocyanuric acid. Minerals. 2021;11:1012. https://doi.org/10.3390/min11091012.
- 30. Meshram P, Pandey BD, Mankind TR. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries. Waste Manag. 2016;51:196-203. https://doi.org/10.1016/j.wasman.2015.12.018.
- 31. Yang HY, Li XJ, Tong LL, Jin ZN, Lu YIN, Chen GB. Leaching kinetics of selenium from copper anode slimes by nitric acid-sulfuric acid mixture. Trans Nonferrous Met Soc. 2018;28:186-92. https://doi.org/10.1016/S1003-6326(18)64652-7.
- 32. Dong Z, Jiang T, Xu B, Yang J, Chen Y, Li Q, Yang Y. Comprehensive recoveries of selenium, copper, gold, silver and lead from a copper anode slime with a clean and economical hydrometallurgical process. Chem Eng J. 2020;393:124762. https://doi.org/10.1016/j.cej.2020.124762.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2fecfc8-2fe6-4ef5-adf8-844c243a9e8d