Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Blockchain has been growing rapidly in the cryptocurrency age and is one of the best information technologies that provide security and privacy to the data of people in crypto economy. In most cases, tampering with data and problems regarding data authentication tend to occur when data is shared and stored on centralized servers. With the assistance of blockchain technology, big data can be managed and saved in the cloud, and the technologies that enhance security by keeping out pernicious users could be used. Therefore, this paper has two aims: to discover the advantages and disadvantages of existing security big data models and to develop a conceptual secure big data model based on blockchain technology. The design science method is used for the purposes of this study. The developed conceptual secure big data model consists of three main processes: dataset storage and encryption, verification and consensus, and access control mechanism. The finding of this study discovered that the developed conceptual secure big data model offers a mix of both traditional and modern security measures which helps domain practitioners understand the security concepts of the blockchain along with big data as well.
Wydawca
Rocznik
Tom
Strony
163--176
Opis fizyczny
Bibliogr. 61 poz., fig., tab.
Twórcy
autor
- Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border University, Rafha 91911, Kingdom of Saudi Arabia
Bibliografia
- 1. Wang R., Xu C., Ye F., Tang S., and Zhang X., “SMBDA: A Blockchain-Based Architecture for Secure Storage and Sharing of Material Big-Data,” IEEE Internet Things J., 2024.
- 2. Mythili M.E.J., Nareash Kumar K.C., Athanan M.M., and Rahman M.M. Secure Information Sharing For The Supply Chain Using Blockchain Technology, Adv. Sci. Technol. Res. J., 2024, 18(1).
- 3. Maheshwari S., Gautam P., and Jaggi C.K. Role of Big Data Analytics in supply chain management: current trends and future perspectives, Int. J. Prod. Res., 2021, 59(6): 1875–1900.
- 4. Sagiroglu S., and Sinanc D. International conference on collaboration technologies and systems (CTS), IEEE, 2013, 2013: 42–47.
- 5. Liu Z., Huang B., Li Y., Sun Q., Pedersen T.B., and Gao D.W. Pricing game and blockchain for electricity data trading in low-carbon smart energy systems, IEEE Trans. Ind. Informatics, 2024.
- 6. Jung T., Li X.Y., Huang W., Qiao Z., Qian J., Chen L., Han J., Houet J. Accounttrade: accountability against dishonest big data buyers and sellers, IEEE Trans. Inf. Forensics Secur., 2018, 14(1): 223–234.
- 7. T. Jung, Li X.Y., Huang W., Qian J., Chen L., Han J., Hou J., Su C.Accounttrade: Accountable protocols for big data trading against dishonest consumers, in IEEE INFOCOM 2017-IEEE Conference on Computer Communications, IEEE, 2017, 1–9.
- 8. Dai W., Dai C., Choo K.-K.R., Cui C., Zou D., Jin H. SDTE: A secure blockchain-based data trading ecosystem, IEEE Trans. Inf. Forensics Secur., 2019, 15: 725–737.
- 9. Chen J., Lv Z., Song H., Design of personnel big data management system based on blockchain, Futur. Gener. Comput. Syst., 2019, 101: 1122–1129.
- 10. Yue L., Junqin H., Shengzhi Q., and Ruijin W. Big data model of security sharing based on blockchain, in 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM), IEEE, 2017, 117–121.
- 11. Zyskind G., and Nathan O. Decentralizing privacy: Using blockchain to protect personal data, in 2015 IEEE security and privacy workshops, IEEE, 2015, 180–184.
- 12. Xiangqian D., Bing G., and Yan S. An Efficient and Secure Decentralizing Data Sharing Model [J], Chinese J. Comput., 2018, 41(5): 1021–1036.
- 13. Zheng Z., Xie S., Dai H., Chen X., Wang H. An overview of blockchain technology: Architecture, consensus, and future trends, in 2017 IEEE international congress on big data (BigData congress), Ieee, 2017, 557–564.
- 14. Taleb I., Serhani M.A., and Dssouli R. Big data quality assessment model for unstructured data, in 2018 International Conference on Innovations in Information Technology (IIT), IEEE, 2018, 69–74.
- 15. Jiang Y., Zhou K., Lu X., Yang S., Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment, Appl. Energy, 2020, 271: 115239.
- 16. Guan Z., Shao X., Wan Z. Secure fair and efficient data trading without third party using blockchain, in 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), IEEE, 2018, 1395–1401.
- 17. Nakamoto S. Bitcoin: A peer-to-peer electronic cash system bitcoin: a peer-to-peer electronic cash system, bitcoin.org. Dispon. en https//bitcoin.org/en/bitcoin-paper, 2009.
- 18. Yang M., Zhu T., Liang K., Zhou W., Deng R.H. A blockchain-based location privacy-preserving crowdsensing system, Futur. Gener. Comput. Syst., 2019, 94: 408–418.
- 19. Ma H., Huang E.X., Lam K.-Y. Blockchain-based mechanism for fine-grained authorization in data crowdsourcing, Futur. Gener. Comput. Syst., 2020, 106: 121–134.
- 20. Kshetri N. Can blockchain strengthen the internet of things?, IT Prof., 2017, 19(4): 68–72.
- 21. Christidis K., and Devetsikiotis M. Blockchains and smart contracts for the internet of things, IEEE access, 2016, 4: 2292–2303,.
- 22. [22] Mazzei D., Baldi G., Fantoni G., Montelisciani G., Pitasi A., Ricci L., Rizzello L. A Blockchain Tokenizer for Industrial IOT trustless applications, Futur. Gener. Comput. Syst., 2020, 105: 432–445.
- 23. Kshetri N.and Loukoianova E. Blockchain adoption in supply chain networks in Asia, IT Prof., 2019, 21(1): 11–15.
- 24. Azaria A., Ekblaw A., Vieira T., and Lippman A. Medrec: Using blockchain for medical data access and permission management, in 2016 2nd international conference on open and big data (OBD), IEEE, 2016, 25–30.
- 25. Chen L., Lee W.-K., Chang C.-C., Choo K.-K.R., and Zhang N. Blockchain based searchable encryption for electronic health record sharing, Futur. Gener. Comput. Syst., 2019, 95: 420–429.
- 26. Xiao Y., Zhang N., Lou W., and Hou Y.T. A survey of distributed consensus protocols for blockchain networks, IEEE Commun. Surv. Tutorials, 2020, 22(2): 1432–1465.
- 27. Seang S., and Torre D. Proof of Work and Proof of Stake consensus protocols: a blockchain application for local complementary currencies, Fr. Univ. Cote d’Azur-GREDEG-CNRS. Str, 2018, 3(4).
- 28. Guo H., Liang H., Huang J., Ou W., Han W., Zhang Q., Zhang R. A framework for efficient cross-chain token transfers in blockchain networks, J. King Saud Univ. Inf. Sci., 2024, 101968.
- 29. Tengyun J. On the Security of Blockchain-based Applications. Swinburne University of Technology, 2024.
- 30. Abdellatif T., and Brousmiche K.-L. Formal verification of smart contracts based on users and blockchain behaviors models, in 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), IEEE, 2018, 1–5.
- 31. Blaze M., Bleumer G., and Strauss M. Divertible protocols and atomic proxy cryptography, in International conference on the theory and applications of cryptographic techniques, Springer, 1998, 127–144.
- 32. Tran D.H., Nguyen H.-L., Zha W., and Ng W.K. Towards security in sharing data on cloud-based social networks, in 2011 8th International Conference on Information, Communications & Signal Processing, IEEE, 2011, 1–5.
- 33. Qin Z., Wu S., and Xiong H. Strongly secure and cost-effective certificateless proxy re-encryption scheme for data sharing in cloud computing, in Big Data Computing and Communications: First International Conference, BigCom 2015, Taiyuan, China, August 1–3, 2015, Proceedings 1, Springer, 2015, 205–216.
- 34. Lee S., Park H., and Kim J. A secure and mutualprofitable DRM interoperability scheme, in The IEEE symposium on Computers and Communications, IEEE, 2010, 75–80.
- 35. Gottwalt F., and Karduck A.P. SIM in light of big data, in 2015 11th International Conference on Innovations in Information Technology (IIT), IEEE, 2015, 326–331.
- 36. Dong X., Li R., He H., Zhou W., Xue Z., and Wu H. Secure sensitive data sharing on a big data platform, Tsinghua Sci. Technol., 2015, 20(1): 72–80.
- 37. Soceanu A., Vasylenko M., Egner A., and Muntean T. Managing the privacy and security of ehealth data, in 2015 20th International Conference on control systems and computer science, IEEE, 2015, 439–446.
- 38. Las-Casas P.H.B., Dias V.S., Meira W., and Guedes D. A big data architecture for security data and its application to phishing characterization, in 2016 IEEE 2nd international conference on big data security on cloud (BigDataSecurity), IEEE international conference on high performance and smart computing (HPSC), and IEEE international conference on intelligent data and security (IDS), IEEE, 2016, 36–41.
- 39. Zhong C., Yen J., Liu P., and Erbacher R.F. Automate cybersecurity data triage by leveraging human analysts’ cognitive process, in 2016 IEEE 2nd International Conference on big data security on cloud (BigDataSecurity), IEEE International Conference on high performance and smart computing (HPSC), and IEEE International Conference on intelligent data and security (IDS), IEEE, 2016, 357–363.
- 40. Chen H.-M., Kazman R., Monarch I., and Wang P. Predicting and fixing vulnerabilities before they occur: a big data approach, in Proceedings of the 2nd International Workshop on BIG Data Software Engineering, 2016, 72–75.
- 41. Yang B., and Zhang T. A scalable meta-model for big data security analyses, in 2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS), IEEE, 2016, 55–60.
- 42. Liu C., Cai Y., and Wang T. Security evaluation of rc4 using big data analytics, in 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), IEEE, 2016, 316–320.
- 43. Naik N., Jenkins P., Savage N., and Katos V., Big data security analysis approach using computational intelligence techniques in R for desktop users, in 2016 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2016, 1–8.
- 44. Xiao C., Wang L., Jie Z., and Chen T. A multi-level intelligent selective encryption control model for multimedia big data security in sensing system with resource constraints, in 2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing (CSCloud), IEEE, 2016, 148–153.
- 45. Zaki T., Uddin M.S., Hasan M.M., and Islam M.N. Security threats for big data: A study on enron e-mail dataset, in 2017 international conference on research and innovation in information systems (icriis), IEEE, 2017, 1–6.
- 46. Casas P., Soro F., Vanerio J., Settanni G., and D’Alconzo A. Network security and anomaly detection with Big-DAMA, a big data analytics framework, in 2017 IEEE 6th international conference on cloud networking (CloudNet), IEEE, 2017, 1–7.
- 47. Uchibeke U.U., Schneider K.A., Kassani S.H., and Deters R. Blockchain access control ecosystem for big data security, in 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (Green-Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), IEEE, 2018, 1373–1378.
- 48. Guan Z., Zhao Y., Li D., and Liu J. Tbdct: A framework of trusted big data collection and trade system based on blockchain and tsm, in 2018 IEEE International Conference on Smart Cloud (SmartCloud), IEEE, 2018, 77–83.
- 49. Keshk M., Turnbull B., Moustafa N., Vatsalan D., and Choo K.-K.R. A privacy-preserving-framework-based blockchain and deep learning for protecting smart power networks, IEEE Trans. Ind. Informatics, 2019, 16(8): 5110–5118.
- 50. Makhdoom I., Zhou I., Abolhasan M., Lipman J., and Ni W. PrivySharing: A blockchain-based framework for privacy-preserving and secure data sharing in smart cities, Comput. Secur., 2020, 88: 101653.
- 51. Younis M., Lalouani W., Lasla N., Emokpae L., and Abdallah M. Blockchain-enabled and data-driven smart healthcare solution for secure and privacy-preserving data access, IEEE Syst. J., 2021, 16(3): 3746–3757.
- 52. Rahman M.S., Chamikara M.A.P., Khalil I., and Bouras A. Blockchain-of-blockchains: An interoperable blockchain platform for ensuring IoT data integrity in smart city, J. Ind. Inf. Integr., 2022, 30: 100408.
- 53. Juma M., Alattar F., and Touqan B. Securing big data integrity for industrial IoT in smart manufacturing based on the trusted consortium blockchain (TCB), IoT, 2023, 4(1): 27–55.
- 54. Liu L., Li J., Lv J., Wang J., Zhao S., and Lu Q. Privacy-Preserving and Secure Industrial Big Data Analytics: A Survey and the Research Framework, IEEE Internet Things J., 2024.
- 55. Hu D., Li Y., Pan L., Li M., and Zheng S. A blockchain-based trading system for big data, Comput. Networks, 2021, 191: 107994.
- 56. Zhang Y., Deng R.H., Liu X., and Zheng D. Blockchain based efficient and robust fair payment for outsourcing services in cloud computing, Inf. Sci. (Ny), 2018, 462: 262–277.
- 57. Park J.H., and Park J.H. Blockchain security in cloud computing: Use cases, challenges, and solutions, Symmetry (Basel)., 2017, 9(8): 164.
- 58. Kumar R., Kumar P., Tripathi R., Gupta G.P., Kumar N., and Hassan M.M. A privacy-preserving-based secure framework using blockchain-enabled deep-learning in cooperative intelligent transport system, IEEE Trans. Intell. Transp. Syst., 2021, 23(9): 16492–16503.
- 59. Peffers K. Tuunanen T., Rothenberger M.A., and Chatterjee S. A design science research methodology for information systems research, J. Manag. Inf. Syst., 2007, 24(3): 45–77.
- 60. Alotaibi F.M., Al-Dhaqm A., and Al-Otaibi Y.D. A Novel Forensic Readiness Framework Applicable to the Drone Forensics Field, Comput. Intell. Neurosci., 2022, 2022.
- 61. Al-Dhaqm A., Razak S., Othman S.H., Choo K.-K.R., Glisson W.B., Ali A., Abrar M. CDBFIP: Common database forensic investigation processes for Internet of Things, IEEE Access, 2017, 5: 24401–24416.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2f77b9f-a61e-4729-b599-0a10ac60e7e1