Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A new method of improving the properties of number sequences produced by a multiplicative congruential pseudorandom generator (MCPG) was proposed. The characteristic feature of the method is the simultaneous usage of numbers generated by the sawtooth chaotic map, realized in a finitestate machine, and symbols produced by the same map. The period of generated sequences can be significantly longer than the period of sequences produced by a multiplicative congruential pseudorandom generator realized in the same machine. It is shown that sequences obtained with the use of the proposed method pass all statistical tests from the standard NIST statistical test suite v.1.8.
Rocznik
Tom
Strony
51--54
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- Poznan University of Technology, Faculty of Electronics and Telecommunications
Bibliografia
- [1] P. Bratley, B. L. Fox, and L. E. Schrage, A Guide to Simulation. New York: Springer-Verlag, 1987, ch. 6.
- [2] J. E. Gentle, Random Number Generation and Monte Carlo Methods. New York: Springer, 2003, ch. 1.
- [3] D. E. Knuth, The Art of Computer Programming, 2nd ed. Addison Wesley, 1981, vol. 2, ch. 3.
- [4] [online], http://csrc.nist.gov/rng/.
- [5] F. Gebhard, “Generating pseudo-random numbers by shuffling a Fibonacci sequence,” Mathematics of Computation, vol. 21, pp. 708–709, 1967.
- [6] C. Bays and S. D. Durham, “Improving a poor random number generator,”ACM Trans. on Mathematical Software, vol. 2, pp. 59–64, 1976.
- [7] M. P. Kennedy, R. Rovatti, and G. Setti, Chaotic Electronics in Telecommunications. Boca Raton: CRC Press, 2000, ch. 3.
- [8] L. Kocarev, G. Jakimoski, and Z. Tasev, Chaos and Pseudo-Randomness in Chaos Control, 2003, pp. 247–263.
- [9] T. Kohda and A. Tsuneda, “Statistics of chaotic binary sequences,” IEEE Trans. Inf. Theory, vol. 43, pp. 104–112, Jan. 1997.
- [10] T. Stojanovski and L. Kocarev, “Chaos-based random number generators – Part I: Analysis,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 281–288, Mar. 2001.
- [11] M. Jessa, “Designing security for number sequences generated by means of the sawtooth chaotic map,” IEEE Trans. Circuits Syst. I, vol. 53, pp. 1140–1150, May 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2f5f8ed-2e6b-49cd-9bdf-a4f401b2c986