PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance analysis of tantalum and copper patches in micro-electro-mechanical systems based microstrip patch antennas for 5th generation mmWave applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rapid advancement of 5th Generation (5G) technology has driven the demand for high performance millimetre-wave (mmWave) antennas with enhanced efficiency and scalability. However, designing microstrip patch antennas (MPAs) at mmWave frequencies presents challenges in optimizing gain, bandwidth, and Voltage Standing Wave Ratio (VSWR) while maintaining cost-effectiveness and fabrication feasibility. This study proposes a novel MPA design incorporating an ET-shaped slot and three parasitic rectangular patches to achieve a balance between gain, bandwidth, and VSWR. The Micro-Electro-Mechanical Systems (MEMS)-based design explores tantalum and copper as alternative patch materials for 28 GHz radio frequency (RF) energy harvesting in 5G mmWave systems. CST simulations are conducted to evaluate key performance metrics, including VSWR, gain, and reflection coefficient, S_11 across material thicknesses of 35 µm, 1 µm, and 700 nm. Among the tested configurations, the 1 µm thick tantalum patch demonstrates the best performance, achieving an S_11 of -21.474 dB, a VSWR of 1.18, and a gain of 6.14 dB at 28 GHz. These findings highlight tantalum’s potential as a scalable, high-performance material for MEMS-based 5G mmWave antenna applications.
Twórcy
  • Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
  • Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
  • Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
  • Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Kajang, Selangor, Malaysia
  • Advanced Telecommunication Technology, Communication Technology Section, Universiti Kuala Lumpur British Malaysian Institute, Selangor, Malaysia
Bibliografia
  • 1. Gnanathickam J, Thanusha G, Moses N, editors. Design and Development of Microstrip Patch Antenna for 5G Application. 2023 International Conference on Computer Communication and Informatics (ICCCI); 2023: IEEE.
  • 2. Ma L, Liu Y, Zhang X, Ye Y, Yin G, Johnson BA. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS journal of photogrammetry and remote sensing. 2019;152:166–77.
  • 3. Yin J, Wu Q, Yu C, Wang H, Hong W. Broadband symmetrical E-shaped patch antenna with multimode resonance for 5G millimeter-wave applications. IEEE Transactions on Antennas and Propagation. 2019;67(7):4474–83.
  • 4. Faseehuddin M, Sampe J, Shireen S, Md Ali SH. Minimum component all pass filters using a new versatile active element. Journal of Circuits, Systems and Computers. 2020;29(5):2050078.
  • 5. Sciuto GL, Bijak J, Kowalik Z, Szczygieł M, Trawiński T. Displacement and magnetic induction measurements of energy harvester system based on magnetic spring integrated in the electromagnetic vibration generator. Journal of Vibration Engineering & Technologies. 2024;12(3):3305–3320.
  • 6. Covaci C, Gontean A. Piezoelectric energy harvesting solutions: A review. Sensors. 2020;20(12):3512.
  • 7. Sciuto GL, Bijak J, Kowalik Z, Kowol P, Brociek R, Capizzi G. Deep learning model for magnetic flux density prediction in magnetic spring on the vibration ASTRJ-04419-2025-01 generator. IEEE Access.
  • 8. Lo Sciuto G. Air pollution effects on the intensity of received signal in 3G/4G mobile terminal. International Journal of Energy and Environmental Engineering. 2019;10(2):221–229.
  • 9. Iannacci J. Microsystem based Energy Harvesting (EH-MEMS): Powering pervasivity of the Internet of Things (IoT) – A review with focus on mechanical vibrations. Journal of King Saud University-Science. 2019;31(1):66–74.
  • 10. Yahya Alkhalaf H, Yazed Ahmad M, Ramiah H. Self-sustainable biomedical devices powered by RF energy: A review. Sensors. 2022;22(17):6371.
  • 11. Mohd Yunus NH, Sampe J, Yunas J, Pawi A, Rhazali ZA. MEMS based antenna of energy harvester for wireless sensor node. Microsystem technologies. 2020;26:2785–92.
  • 12. Kishore S, Rajak AA. Microstrip patch antenna with C slot for 5G communication at 30 GHz. Emerging Science Journal. 2022;6(6):1315–27.
  • 13. Khalid A, Sampe J, Majlis BY, Mohamed MA, Chikuba T, Iwasaki T, et al., editors. Towards high performance graphene nanoribbon transistors (GNR-FETs). 2015 IEEE regional symposium on micro and nanoelectronics (RSM); 2015: IEEE.
  • 14. Yunus NHM, Sampe J, Yunas J, Pawi A, editors. Parameter design of microstrip patch antenna operating at dual microwave-band for RF energy harvester application. 2017 IEEE regional symposium on micro and nanoelectronics (RSM); 2017: IEEE.
  • 15. Bakshi G, Yaduvanshi R, Vaish A, editors. Dual Band Sapphire Stacked RDR Aperture Coupled Antenna with Linear Polarization and Circular Polarization for C-Band Applications. 2019 Third International Conference on Inventive Systems and Control (ICISC); 2019: IEEE.
  • 16. Nayak A, Dutta S, Mandal S. Design of dual band microstrip patch antenna for 5G communication operating at 28 GHz and 46 GHz. International Journal of Wireless and Microwave Technologies. 2023;13(2):43–52.
  • 17. Kiani N, Hamedani FT, Rezaei P. Reconfigurable graphene-gold-based microstrip patch antenna: RHCP to LHCP. Micro and Nanostructures. 2023;175:207509.
  • 18. Ramli MR, Ibrahim S, Ahmad Z, Abidin ISZ, Ain MF. Stretchable conductive ink based on polysiloxane–silver composite and its application as a frequency reconfigurable patch antenna for wearable electronics. ACS applied materials & interfaces. 2019;11(31):28033–42.
  • 19. Tamayo-Dominguez A, Fernandez-Gonzalez JM, Castaner MS. Low-cost millimeter-wave antenna with simultaneous sum and difference patterns for 5G point-to-point communications. IEEE Communications Magazine. 2018;56(7):28–34.
  • 20. Shoaib HM, Snigdho MK, Islam AKME, editors. Comparative Study on the Performance of Microstrip Patch Antenna using Gold, Silver, and Copper as Radiating Surfaces. 2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE); 2024; 22–23 Feb. 2024.
  • 21. Hiçdurmaz B, Gümüş ÖF. Design and analysis of 28 GHz microstrip patch antenna for different type FR4 claddings. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2019;24(2):265–88.
  • 22. Redzuwan RM, Sampe J, Latif R, Rhazali ZA, Yunus NHM. Design of a High-Gain MEMS-Based Microstrip Patch Antenna for RF Energy Harvesting in Millimeter-Wave 5G Applications. SSRG International Journal of Electrical and Electronics Engineering. 2024;11(9):316–25.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2f21d6f-4c69-4da9-a966-59cd8316f8c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.