PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automated detection of driver fatigue from electroencephalography through wavelet-based connectivity

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Mental fatigue is one of the most causes of road accidents. Identification of biological tools and methods such as electroencephalogram (EEG) are invaluable to detect them at early stage in hazard situations. Methods: In this paper, an expert automatic method based on brain region connectivity for detecting fatigue is proposed. The recorded general data during driving in both fatigue (the last five minutes) and alert (at the beginning of driving) states are used in analyzing the method. In this process, the EEG data during continuous driving in one to two hours are noted. The new feature of Gaussian Copula Mutual Information (GCMI) based on wavelet coefficients is calculated to detect brain region connectivity. Classification for each subject is then done through selected optimal features using the support vector machine (SVM) with linear kernel. Results: The designed technique can classify trials with 98.1% accuracy. The most significant contributions to the selected features are the wavelet coefficients details 1_2 (corresponding to the Beta and Gamma frequency bands) in the central and temporal regions. In this paper, a new algorithm for channel selection is introduced that has been able to achieve 97.2% efficiency by selecting eight channels from 30 recorded channels. Conclusion: The obtained results from the classification are compared with other methods, and it is proved that the proposed method accuracy is higher from others at a significant level. The technique is completely automatic, while the calculation load could be reduced remarkably through selecting the optimal channels implementing in real-time systems.
Twórcy
  • Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, 71557-13876, Iran
  • Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
  • Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
Bibliografia
  • [1] Wang H, Liu X, Li J, Xu T, Bezerianos A, Sun Y, et al. Driving fatigue recognition with functional connectivity based on phase synchronization. IEEE Trans Cogn Dev Syst 2020.
  • [2] Li Z, Yang Q, Chen S, Zhou W, Chen L, Song L. A fuzzy recurrent neural network for driver fatigue detection based on steering-wheel angle sensor data. Int J Distrib Sens Netw 2019;151550147719872452.
  • [3] Murugan S, Selvaraj J, Sahayadhas A. Detection and analysis: driver state with electrocardiogram (ECG). Phys Eng Sci Med 2020;1–13.
  • [4] Jiao Y, Deng Y, Luo Y, Lu B-L. Driver sleepiness detection from EEG and EOG signals using GAN and LSTM networks. Neurocomputing 2020.
  • [5] Zhou F, Alsaid A, Blommer M, Curry R, Swaminathan R, Kochhar D, et al. Driver fatigue transition prediction in highly automated driving using physiological features. Expert Syst Appl 2020;147113204.
  • [6] Cao Z, Chuang C-H, King J-K, Lin C-T. Multi-channel EEG recordings during a sustained-attention driving task. Sci Data 2019;6:1–8.
  • [7] Tuncer T, Dogan S, Ertam F, Subasi A. A dynamic center and multi threshold point based stable feature extraction network for driver fatigue detection utilizing EEG signals. Cogn Neurodyn 2020. http://dx.doi.org/10.1007/s11571-020-09601-w.
  • [8] Zou S, Qiu T, Huang P, Bai X, Liu C. Constructing multi-scale entropy based on the empirical mode decomposition(EMD) and its application in recognizing driving fatigue. J Neurosci Methods 2020;341108691. http://dx.doi.org/10.1016/j.jneumeth.2020.108691.
  • [9] Shahverdy M, Fathy M, Berangi R, Sabokrou M. Driver behavior detection and classification using deep convolutional neural networks. Expert Syst Appl 2020;149113240.
  • [10] Huang C, Wang X, Cao J, Wang S, Zhang Y. HCF: a hybrid CNN framework for behavior detection of distracted drivers. IEEE Access 2020;8:109335–49.
  • [11] Mulhall MD, Cori J, Sletten TL, Kuo J, Lenné MG, Magee M, et al. A pre-drive ocular assessment predicts alertness and driving impairment: a naturalistic driving study in shift workers. Accid Anal Prev 2020;135105386.
  • [12] Ma Y, Chen B, Li R, Wang C, Wang J, She Q, et al. Driving fatigue detection from EEG using a modified PCANet method. Comput Intell Neurosci 2019;2019.
  • [13] Fujiwara K, Abe E, Kamata K, Nakayama C, Suzuki Y, Yamakawa T, et al. Heart rate variability-based driver drowsiness detection and its validation with EEG. IEEE Trans Biomed Eng 2018;66:1769–78.
  • [14] Zhenhai G, DinhDat L, Hongyu H, Ziwen Y, Xinyu W. Driver drowsiness detection based on time series analysis of steering wheel angular velocity. 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), IEEE. 2017. pp. 99–101.
  • [15] Bose R, Wang H, Dragomir A, Thakor N, Bezerianos A, Li J. Regression based continuous driving fatigue estimation: towards practical implementation. IEEE Trans Cogn Dev Syst 2019.
  • [16] Goyani M, Patel N. Template matching and machine learning-based robust facial expression recognition system using multi-level Haar wavelet. Int J Comput Appl 2020;42:360–71.
  • [17] Chen J, Wang H, Hua C. Assessment of driver drowsiness using electroencephalogram signals based on multiple functional brain networks. Int J Psychophysiol 2018;133:120–30. http://dx.doi.org/10.1016/j.ijpsycho.2018.07.476.
  • [18] Zhang S, Gao X. The effect of visual stimuli noise and fatigue on steady-state visual evoked potentials. J Neural Eng 2019;16:56023.
  • [19] Jing D, Liu D, Zhang S, Guo Z. Fatigue driving detection method based on EEG analysis in low-voltage and hypoxia plateau environment. Int J Transp Sci Technol 2020.
  • [20] Luo H, Qiu T, Liu C, Huang P. Research on fatigue driving detection using forehead EEG based on adaptive multi-scale entropy. Biomed Signal Process Control 2019;51:50–8.
  • [21] Zandi AS, Quddus A, Prest L, Comeau FJE. Non-intrusive detection of drowsy driving based on eye tracking data. Transp Res Rec 2019;2673:247–57.
  • [22] Sporns O. Contributions and challenges for network models in cognitive neuroscience. Nat Neurosci 2014;17:652–60. http://dx.doi.org/10.1038/nn.3690.
  • [23] Li J, Lim J, Chen Y, Wong K, Thakor N, Bezerianos A, et al. Mid-task break improves global integration of functional connectivity in lower alpha band. Front Hum Neurosci 2016;10:304. http://dx.doi.org/10.3389/fnhum.2016.00304.
  • [24] Liu JP, Zhang C, Zheng CX. Estimation of the cortical functional connectivity by directed transfer function during mental fatigue. Appl Ergon 2010;42:114–21. http://dx.doi.org/10.1016/j.apergo.2010.05.008.
  • [25] Chai R, Naik GR, Nguyen TN, Ling SH, Tran Y, Craig A, et al. Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-Based system. IEEE J Biomed Health Inform 2017;21:715–24. http://dx.doi.org/10.1109/JBHI.2016.2532354.
  • [26] Sun Y, Lim J, Meng J, Kwok K, Thakor N, Bezerianos A. Discriminative analysis of brain functional connectivity patterns for mental fatigue classification. Ann Biomed Eng 2014;42:2084–94. http://dx.doi.org/10.1007/s10439-014-1059-8.
  • [27] Delimayanti MK, Purnama B, Nguyen NG, Faisal MR, Mahmudah KR, Indriani F, et al. Classification of brainwaves for sleep stages by high-dimensional FFT features from EEG signals. Appl Sci 2020;10:1797.
  • [28] Han S-Y, Kwak N-S, Oh T, Lee S-W. Classification of pilots' mental states using a multimodal deep learning network. Biocybern Biomed Eng 2020;40:324–36.
  • [29] Wang H, Dragomir A, Abbasi NI, Li J, Thakor NV, Bezerianos A. A novel real-time driving fatigue detection system based on wireless dry EEG. Cogn Neurodyn 2018;12:365–76. http://dx.doi.org/10.1007/s11571-018-9481-5.
  • [30] Ahmadi A, Shalchyan V, Daliri MR. A new method for epileptic seizure classification in EEG using adapted wavelet packets. 2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting, EBBT 2017, IEEE. 2017. pp. 1–4. http://dx.doi.org/10.1109/EBBT.2017.7956756.
  • [31] Ahmadi A, Behroozi M, Shalchyan V, Daliri MR. Classification of epileptic EEG signals by wavelet based CFC. 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting, EBBT 2018. 2018. pp. 1–4. http://dx.doi.org/10.1109/EBBT.2018.8391471.
  • [32] Sharma M, Bhurane AA, Rajendra Acharya U. MMSFL-OWFB: a novel class of orthogonal wavelet filters for epileptic seizure detection. Knowl Based Syst 2018;160:265–77. http://dx.doi.org/10.1016/j.knosys.2018.07.019.
  • [33] Mohseni M, Shalchyan V, Jochumsen M, Niazi IK. Upper limb complex movements decoding from pre-movement EEG signals using wavelet common spatial patterns. Comput Methods Programs Biomed 2020;183105076. http://dx.doi.org/10.1016/j.cmpb.2019.105076.
  • [34] Ahmadi A, Tafakori S, Shalchyan V, Daliri MR. Epileptic seizure classification using novel entropy features applied on maximal overlap discrete wavelet packet transform of EEG signals. 2017 7th International Conference on Computer and Knowledge Engineering ICCKE 2017, vol. 2017. 2017. p. 390–5. http://dx.doi.org/10.1109/ICCKE.2017.8167910.
  • [35] Dimitrakopoulos GN, Kakkos I, Dai Z, Wang H, Sgarbas K, Thakor N, et al. Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks. IEEE Trans Neural Syst Rehabil Eng 2018;26:740–9. http://dx.doi.org/10.1109/TNSRE.2018.2791936.
  • [36] Liu X, Li T, Tang C, Xu T, Chen P, Bezerianos A, et al. Emotion recognition and dynamic functional connectivity analysis based on eeg. IEEE Access 2019;7:143293–302.
  • [37] Ahmadi A, Davoudi S, Behroozi M, Daliri MR. Decoding covert visual attention based on phase transfer entropy. Physiol Behav 2020;222. http://dx.doi.org/10.1016/j.physbeh.2020.112932.
  • [38] Davoudi S, Ahmadi A, Daliri MR. Frequency–amplitude coupling: a new approach for decoding of attended features in covert visual attention task. Neural Comput Appl 2020;1–16.
  • [39] Ince RAA, Giordano BL, Kayser C, Rousselet GA, Gross J, Schyns PG. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula. Hum Brain Mapp 2017;38:1541–73. http://dx.doi.org/10.1002/hbm.23471.
  • [40] Min J, Wang P, Hu J. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system. PLoS One 2017;12e0188756.
  • [41] Daly I, Scherer R, Billinger M, Müller-Putz G. FORCe: fully online and automated artifact removal for brain-computer interfacing. IEEE Trans Neural Syst Rehabil Eng 2015;23:725–36. http://dx.doi.org/10.1109/TNSRE.2014.2346621.
  • [42] Ahmadi A, Davoudi S, Daliri MR. Computer Aided Diagnosis System for multiple sclerosis disease based on phase to amplitude coupling in covert visual attention. Comput Methods Programs Biomed 2019;169. http://dx.doi.org/10.1016/j.cmpb.2018.11.006.
  • [43] Azarmi F, Miri Ashtiani SN, Shalbaf A, Behnam H, Daliri MR. Granger causality analysis in combination with directed network measures for classification of MS patients and healthy controls using task-related fMRI. Comput Biol Med 2019;115103495. http://dx.doi.org/10.1016/j.compbiomed.2019.103495.
  • [44] Liu Y, Zhou W, Yuan Q, Chen S. Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG. IEEE Trans Neural Syst Rehabil Eng 2012;20:749–55. http://dx.doi.org/10.1109/TNSRE.2012.2206054.
  • [45] Li M, Chen W, Zhang T. Automatic epilepsy detection using wavelet-based nonlinear analysis and optimized SVM. Biocybern Biomed Eng 2016;36:708–18. http://dx.doi.org/10.1016/j.bbe.2016.07.004.
  • [46] Krishnan PT, Joseph Raj AN, Balasubramanian P, Chen Y. Schizophrenia detection using MultivariateEmpirical Mode Decomposition and entropy measures from multichannel EEG signal. Biocybern Biomed Eng 2020;40:1124–39. http://dx.doi.org/10.1016/j.bbe.2020.05.008.
  • [47] Gopan KG, Prabhu SS, Sinha N. Sleep EEG analysis utilizing inter-channel covariance matrices. Biocybern Biomed Eng 2020;40:527–45. http://dx.doi.org/10.1016/j.bbe.2020.01.013.
  • [48] Yaghoobi Karimui R, Azadi S, Keshavarzi P. The ADHD effect on the actions obtained from the EEG signals. Biocybern Biomed Eng 2018;38:425–37. http://dx.doi.org/10.1016/j.bbe.2018.02.007.
  • [49] Hu J, Min J. Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model. Cogn Neurodyn 2018;12:431–40. http://dx.doi.org/10.1007/s11571-018-9485-1.
  • [50] Khan MQ, Lee S. A comprehensive survey of driving monitoring and assistance systems. Sensors 2019;19:2574.
  • [51] Chen J, Taylor JE, Comu S. Assessing task mental workload in construction projects: a novel electroencephalography approach. J Constr Eng Manag 2017;1434017053. http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001345.
  • [52] Zhao C, Zhao M, Yang Y, Gao J, Rao N, Lin P. The reorganization of human brain networks modulated by driving mental fatigue. IEEE J Biomed Health Inform 2017;21:743–55. http://dx.doi.org/10.1109/JBHI.2016.2544061.
  • [53] Liu T, Liu Y, He W, He W, Yu X, Guo S, et al. A passenger reduces sleepy driver's activation in the right prefrontal cortex: a laboratory study using near-infrared spectroscopy. Accid Anal Prev 2016;95:358–61.
  • [54] Chen J, Wang H, Hua C. Electroencephalography based fatigue detection using a novel feature fusion and extreme learning machine. Cogn Syst Res 2018;52:715–28.
  • [55] Dimitrakopoulos GN, Kakkos I, Vrahatis AG, Sgarbas K, Li J, Sun Y, et al. Driving mental fatigue classification based on brain functional connectivity. International Conference on Engineering Applications of Neural Networks, Springer. 2017. pp. 465–74.
  • [56] Diaz-Piedra C, Sebastián MV, Di Stasi LL. EEG theta power activity reflects workload among army combat drivers: an experimental study. Brain Sci 2020;10:199.
  • [57] Gudigar A, Raghavendra U, San TR, Ciaccio EJ, Acharya UR. Application of multiresolution analysis for automated detection of brain abnormality using MR images: a comparative study. Future Gener Comput Syst 2019;90:359–67. http://dx.doi.org/10.1016/j.future.2018.08.008.
  • [58] Khare SK, Bajaj V. Optimized tunable q wavelet transform based drowsiness detection from electroencephalogram signals. IRBM 2020. http://dx.doi.org/10.1016/j.irbm.2020.07.005.
  • [59] Fraiwan L, Lweesy K, Khasawneh N, Wenz H, Dickhaus H. Automated sleep stage identification system based on time-frequency analysis of a single EEG channel and random forest classifier. Comput Methods Programs Biomed 2012;108:10–9. http://dx.doi.org/10.1016/j.cmpb.2011.11.005.
  • [60] Eoh HJ, Chung MK, Kim SH. Electroencephalographic study of drowsiness in simulated driving with sleep deprivation. Int J Ind Ergon 2005;35:307–20. http://dx.doi.org/10.1016/j.ergon.2004.09.006.
  • [61] Liu J, Zhang C, Zheng C. EEG-based estimation of mental fatigue by using KPCA-HMM and complexity parameters. Biomed Signal Process Control 2010;5:124–30. http://dx.doi.org/10.1016/j.bspc.2010.01.001.
  • [62] Fonseca A, Kerick S, King JT, Lin CT, Jung TP. Brain network changes in fatigued drivers: a longitudinal study in a realworld environment based on the effective connectivity analysis and actigraphy data. Front Hum Neurosci 2018;12. http://dx.doi.org/10.3389/fnhum.2018.00418.
  • [63] Morales JM, Díaz-Piedra C, Rieiro H, Roca-González J, Romero S, Catena A, et al. Monitoring driver fatigue using a single-channel electroencephalographic device: a validation study by gaze-based, driving performance, and subjective data. Accid Anal Prev 2017;109:62–9.
  • [64] Zhao C, Zhao M, Liu J, Zheng C. Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator. Accid Anal Prev 2012;45:83–90. http://dx.doi.org/10.1016/j.aap.2011.11.019.
  • [65] Borghini G, Astolfi L, Vecchiato G, Mattia D, Babiloni F. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci Biobehav Rev 2014;44:58–75. http://dx.doi.org/10.1016/j.neubiorev.2012.10.003.
  • [66] Kong W, Zhou Z, Jiang B, Babiloni F, Borghini G. Assessment of driving fatigue based on intra/inter-region phase synchronization. Neurocomputing 2017;219:474–82. http://dx.doi.org/10.1016/j.neucom.2016.09.057.
  • [67] Konga W, Zhoua Z, Zhoua L, Daia Y. Estimation for driver fatigue with phase locking value. Int J Bioelectromagn 2012;14:115–20.
  • [68] Tam WK, Ke Z, Tong KY. Performance of common spatial pattern under a smaller set of EEG electrodes in brain-computer interface on chronic stroke patients: a multi-session dataset study. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS; 2011. p. 6344–7. http://dx.doi.org/10.1109/IEMBS.2011.6091566.
  • [69] Khushaba RN, Al-Ani A, Al-Jumaily A. Feature subset selection using differential evolution and a statistical repair mechanism. Expert Syst Appl 2011;38:11515–26. http://dx.doi.org/10.1016/j.eswa.2011.03.028.
  • [70] Ravi A, Beni NH, Manuel J, Jiang N. Comparing user-dependent and user-independent training of CNN for SSVEP BCI. J Neural Eng 2020.
  • [71] Zeng H, Yang C, Zhang H, Wu Z, Zhang J, Dai G, et al. A lightGBM-based EEG analysis method for driver mental states classification. Comput Intell Neurosci 2019;2019.
  • [72] Dong N, Li Y, Gao Z, Ip WH, Yung KL. A WPCA-based method for detecting fatigue driving from EEG-based internet of vehicles system. IEEE Access 2019;7:124702–11. http://dx.doi.org/10.1109/ACCESS.2019.2937914.
  • [73] Zeng H, Yang C, Dai G, Qin F, Zhang J, Kong W. EEG classification of driver mental states by deep learning. Cogn Neurodyn 2018;12:597–606.
  • [74] Garcés Correa A, Orosco L, Laciar E. Automatic detection of drowsiness in EEG records based on multimodal analysis. Med Eng Phys 2014;36:244–9. http://dx.doi.org/10.1016/j.medengphy.2013.07.011.
  • [75] da Silveira T, de Jesus Kozakevicius A, Rodrigues CR. Drowsiness detection for single channel EEG by DWT best m-term approximation. Rev Bras Eng Biomed 2015;31:107–15. http://dx.doi.org/10.1590/2446-4740.0693.
  • [76] Li W, He QC, Fan XM, Fei ZM. Evaluation of driver fatigue on two channels of EEG data. Neurosci Lett 2012;506:235–9. http://dx.doi.org/10.1016/j.neulet.2011.11.014.
  • [77] Mardi Z, Ashtiani SN, Mikaili M. EEG-based drowsiness detection for safe driving using chaotic features and statistical tests. J Med Signals Sens 2011;1:130–7. http://dx.doi.org/10.4103/2228-7477.95297.
  • [78] Wang Q, Li Y, Liu X. Analysis of feature fatigue EEG signals based on wavelet entropy. Intern J Pattern Recognit Artif Intell 2018;321854023. http://dx.doi.org/10.1142/S021800141854023X.
  • [79] Di Flumeri G, Aricò P, Borghini G, Sciaraffa N, Di Florio A, Babiloni F. The dry revolution: evaluation of three different eeg dry electrode types in terms of signal spectral features, mental states classification and usability. Sensors (Switzerland) 2019;19:1365. http://dx.doi.org/10.3390/s19061365.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2ee527a-a905-46c3-a1d5-a9daba16375b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.