PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of risks associated with the operation of the tailings storage facility Veliki Krivelj, Bor (Serbia)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena ryzyka związanego z funkcjonowaniem składowiska odpadów Veliki Krivelj, Bor (Serbia)
Języki publikacji
EN
Abstrakty
EN
The Tailings Storage Facility Veliki Krivelj was formed by damming the Krivelj River valley, and it constitutes one of the largest industrial waste disposal sites in Serbia. As such, it represents a big challenge for the Bor Copper Mine in terms of stability preservation and environmental protection. Bering this in mind, it is safe to say that it is of crucial importance to recognize all the risks involved with its operation and management. This paper presents a semi-quantitative assessment of the risks entailed In the management of Tailings Storage Facility Veliki Krivelj, and demonstrates the use of 4×4 risk matrix to estimate the likelihood of potential failure scenarios and consequences and includes the application of the „As Low As Reasonably Practicable“ diagram for final risk evaluation. The results show that the management of the Tailings Storage Facility Veliki Krivelj is associated with risks that vary from negligible to high, i.e. from broadly to conditionally acceptable risks and also suggest that the irregularities in hydraulic elements and hydro-technical structures at Tailings Storage Facility are the ones with the greatest impact in increasing the risks.
PL
Składowisko odpadów poflotacyjnych Veliki Krivelj powstało w dolinie po przegrodzeniu tamą rzeki Krivelj, w chwili obecnej jest to jedno z największych składowisk odpadów przemysłowych na terenie Serbii. W sowim obecnym kształcie stanowi ono wielkie wyzwanie dla zakładu kopalnictwa miedzi Bor, w zakresie ochrony, zachowania i stabilizacji warunków środowiska naturalnego. Mając powyższe względy na uwadze, stwierdzić należy że kwestią absolutnie kluczową jest rozpoznanie wszelkich rodzajów ryzyka związanego z funkcjonowaniem i utrzymaniem wysypiska. W artykule przedstawiono w pół-ilościową analizę ryzyka związanego z funkcjonowaniem składowiska odpadów poflotacyjnych Veliki Krivelj. Zademonstrowane zastosowanie macierzy ryzyka 4×4 do obliczania prawdopodobieństwa awarii w kilku rozpatrywanych scenariuszach działania oraz towarzyszących im skutków. Przedstawiono także zastosowanie diagramu obliczania ryzyka końcowego według schematu „tak niskie, jak tylko praktycznie wykonalne”. Wyniki wskazują, że funkcjonowanie składowiska odpadów poflotacyjnych Veliki Krivelj związane jest występowaniem wielu czynników ryzyka, od pomijalnych do bardzo wysokich poziomów, innymi słowy, od ryzyka powszechnie akceptowanego do czynników akceptowanych warunkowo. Wskazano także, że nieregularne działanie elementów hydraulicznych i hydro-technicznych w ramach urządzeń składowiska stanowi czynnik mający największy wpływ na podniesienie poziomu ryzyka.
Rocznik
Strony
165--181
Opis fizyczny
Bibliogr. 41 poz., fot., rys., tab.
Twórcy
autor
  • University of Belgrade, Faculty of Mining and Geology, Djusina 7, 11000 Belgrade, Serbia
autor
  • University of Belgrade, Faculty of Mining and Geology, Djusina 7, 11000 Belgrade, Serbia
autor
  • University of Belgrade, Faculty of Mining and Geology, Djusina 7, 11000 Belgrade, Serbia
Bibliografia
  • [1] Antonovic G., Pavićevic N., Nikodijevic V., Aleksic Z., Tanasijevic D., Filipovic D., Vojinovic Lj., Jeremic M., 1974. Timok Basin Soils. Center for Agricultural Research – Institute of Soil Science, Belgrade.
  • [2] Azam S., Li Q., 2010. Tailings dam failures: A review of the last one hundred years. Geotechnical News, 28 (4), pp. 50-54.
  • [3] Blight G.E., 2009. Geotechnical Engineering For Mine Waste Storage Facilities. CRC Press, Taylor & Francis Group, London, UK.
  • [4] Bogdanovic G.D., Trumic M.Z., Stankovic V., Antic D.V., Trumic M.S., Milanovic Z., 2013. Mine Water from Mining and Smelting Basin Bor: A resource for the recovery of copper or polluter of the environment. Recycling and Sustainable Development, 6 (1), pp. 41-50.
  • [5] Bowker L.N., Chambers D.M., 2015. The risk, public liability, & economics of tailings storage facility failures. Research Paper. Stonington, ME.
  • [6] Clemente J.L.M, Snow R.E., Bernedo C., Strachan C.L., Fourie A., 2013. Dam Break Analysis Applied to Tailings Dams: USSD Workshop Summary and Perspectives. Proceedings of the 33rd Annual USSD Conference, Phoenix, Arizona.
  • [7] David R., Wilkinson G., 2009. Back to Basics: Risk Matrices and ALARP. Safety Assurance Services Ltd., Atkins Defence. Farnham, UK.
  • [8] Davies M.P., 2002. Tailings impoundment failures: are geotechnical engineers listening. Geotechnical News, September, pp. 31-36.
  • [9] Davies M., Martin T., Lighthall P. 2000. Mine tailings dams: When things go wrong. Tailings Dams 2000, Association of State Dam Safety Officials, U.S. Committee on Large Dams, Las Vegas, Nevada, pp 261-273.
  • [10] Faculty of Mining and Geology, Environmental Impact Assessment Study for the Reconstructin/Construction of Collectors at Veliki Krivelj, 2010. University of Belgrade, Belgrade.
  • [11] Graham W.J., 1999. A procedure for estimating loss of life caused by dam failure. US Department of the Interior, Bureau of Reclamation, Dam Safety Office, Denver, Colo.
  • [12] ICOLD, 2001. Bulletin 121: Tailings Dams – Risk of Dangerous Occurrences, Lessons Learnt from Practical Experiences, International Commission on Large Dams, Paris.
  • [13] ICOLD, 2010. Selecting seismic parameters for large dams. Guidelines, Revision of Bulletin 72. Committee on Seismic Aspects of Dam Design, International Commission on Large Dams, Paris.
  • [14] Institute for Standardization of Serbia, 1980. Design of Dikes and Hydraulic Embankments – Technical conditions (SRPS.U.C5.020:1980), Belgrade.
  • [15] Jaroslac Cerni Institute (JCI), 2015, Study on Protection of Mining Fields Veliki Krivelj and Cerovo and Populated areas in the Vicinity of Veliki Krivelj Against Surface Waters and Provision of Required Quantities of Technical Water for the Cerovo Mine. Water Management Institute Jaroslav Cerni, Belgrade, In-house Documentation (Property of the Mine).
  • [16] Jeyapalan J.K., Duncan J.M., Seed H.B., 1981. Summary of research on analyses of flow failures of mine tailings impoudments. Information Circular 8857, Technology Transfer Workshop on Mine Waste Disposal Techniques, U.S. Bureau of Mines, Denver, Colorado, pp. 54-61.
  • [17] Jovanovic M., 1997. Problems of Numerical Simulation of Flood Waves Caused by Tailings Dam Failure. South Congress, Society on Large Dams, Budva.
  • [18] Knezevic D., Torbica S., Rajkovic Z., Nedic M., 2014. Industrial Waste Disposal. Faculty of Mining and Geology, University of Belgrade, Belgrade.
  • [19] Lekovski R., Mikic M., Krzanović D., 2013. Impact of the flotation tailing dumps on the living environment of Bor and protective measures. Mining and Metallurgy Engineering Bor, (2), pp. 97-116.
  • [20] Lilic J., 2015. The Impact of Land Reclamation on Technosol Properties at the Bor Copper Mine. Doctorial Dissertation, Faculty of Agriculture, University of Belgrade, Belgrade.
  • [21] Lucia P.C, 1981. Review of Experiences with Flow Failures of Tailings Dams and Waste Impoundments. PhD dissertation, University of California, Berkeley.
  • [22] Martin T.E., Davies M.P., Rice S., Higgs T., Lighthall P.C., 2002. Stewardship of Tailings Facilities. World Business Council for Sustainable Development, pp. 9-10.
  • [23] McPhail G., 2015, Probabilistic dam break assessment and flow slide analysis for tailings storage facilities. 3rd International Seminar in Tailings Management, (Online), available at: http://wwlengineering.com/wp-content/uploads/2016/10/MW-017-Tailings-2015-McPhail-Dam-Break-anf-Flow-Slide-Analysis-Paper-Tailings-2015.pdf.
  • [24] Mill O., 2001. The society and the role of the authorities. Seminar on Safe Tailings dam construction, Gällivare, Swedish Mining Association, European Commission Directorate-General Environment.
  • [25] Mining and Metallurgy Insitute Bor (MMI Bor), 2016. Mining Technical Design for Elevation of Veliki Krivelj Flotation Tailings Storage Facility at Field 1 to 390 meters asl, Bor.
  • [26] Mishra R.K. Rinne M., 2015. Geotechnical Risk Classification for Underground Mines/Klasyfikacja. Poziomu Zagrożenia Geotechnicznego W Kopalniach Podziemnych. Archives of Mining Sciences, 60 (1), pp. 51-61.
  • [27] Morgenstern N.R., 2001. Geotechnics and Mine Waste Management – Update, Morgenstern, N. “Geotechnics and mine waste management–update.” Seminar on Safe Tailings Dam Constructions, pp. 54-67.
  • [28] Nelson J.D., Volpe R.L., Wardwell R.E., Schumm S.A., Staub W.P., 1983. Design considerations for long-term stabilization of uranium mill tailings impoundments (No. NUREG/CR-3397; ORNL-5979). Oak Ridge National Lab., TN (USA).
  • [29] Radovanovic S., n.d., Seismic Hazard Map of Serbia for Local Character Area and a Return Period of 475 Years. (Online), Available at: http://www.seismo.gov.rs/Seizmicnost/Povratni%20period-475_lokalno_tlo_c.pdf.
  • [30] Rico M., Benito G., Salgueiro A.R., Díez-Herrero A., & Pereira H.G., 2008a. Reported tailings dam failures: a review of the European incidents in the worldwide context. Journal of Hazardous Materials, 152 (2), pp. 846-852.
  • [31] Rico M., Diez-Herrero A., Benito G., 2008b. Floods from tailings dam failures. J. Hazard. Mater., 154 (3), pp. 79-87.
  • [32] Robertson M.A., 2011. Mine Waste Management in the 21st Century Challenges & Solutions Beyond Incremental Changes. Key Note Address Tailings &Mine Waste, Vancouver B.C., available at: http://www.infomine.com/library/publications/docs/Robertson2011c.pdf.
  • [33] Robertson M.A., 2012. FMEA Risk Analysis: Failure Modes and Effects Analysis. (Online), Available at: http://www.infomine.com/library/publications/docs/Robertson2012b.pdf.
  • [34] Rourke H., Luppnow D., 2015. The Risks of Excess Water on Tailings Facilities and Its Application to Dam-break Studies.Tailings and Mine Waste Managment for the 21st Century, Sydney.
  • [35] Seismological Survey of Serbia, n.d. Brief Description of Seismic Intensity Degrees in the European Macroseismic Scale EMS-98. (Online), Available at: http://www.seismo.gov.rs/Seizmicnost/Skala_ostecenja-lat.pdf.
  • [36] Steffen O., 1987. The design of tailings dam stability using risk evaluation concepts. Tailings Disposal Today – Secondo Conference, (Online), available at: http://link.lib.umanitoba.ca/portal/Tailing-disposal-today--volume-2- proceedings-of/1xgrNJHcs0o.
  • [37] USCOLD, 1994. Tailings Dam Incidents. U.S. Committee on Large Dams, Denver, Colorado.
  • [38] Wei, Zuan, Yin, Guangszhi, Wang J.G, Ling, Wan, Guangzhi, Li, 2012. Design, Construction and Management of Tailings Storage Facilities For Surface Disposal in China: Case Studies of Failures, Waste Management Research, 31, pp. 106-112.
  • [39] Whitman R.V., 2000. Organizing and evaluating uncertainty in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 126 (7), pp. 583-593.
  • [40] Wise Uranium Project, 2016. Chronology of major tailings dam failures (Online). available at : http: //www.wise-uranium.org/mdaf.html.
  • [41] Xin Z., Xiaohu X., Kaili X., 2011. Study on the Risk Assessment of Tailings Dam Break. Procedia Engineering, pp. 2261-2269.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2ed961f-c755-4897-8174-bd3ea89f5a90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.