PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of thermoelastic transient contact interaction for binary bearing taking into account convection

Treść / Zawartość
Identyfikatory
Warianty tytułu
RU
Моделирование термоупругого нестационарного контактного взаимодействия в бинарном подшипнике скольжения с учетом конвективного теплообмена
Języki publikacji
EN
Abstrakty
EN
Serviceability of metal-polymeric "dry-friction" sliding bearings depends on many parameters, including the rotational speed, friction coefficient, thermal and mechanical properties of the bearing system and, as a result, the value of contact temperature. The objective of this study is to develop a computational model for the metallic-polymer bearing, determination on the basis of this model temperature distribution, equivalent and contact stresses for elements of the bearing arrangement and selection of the optimal parameters for the bearing system to achieve thermal balance. Static problem for the combined sliding bearing with the account of heat generation due to friction has been studied in [1]; the dynamic thermoelastic problem of the shaft rotation in a single and double layer bronze bearings were investigated in [2, 3].
RU
Работоспособность полимерных подшипников скольжения «сухого трения» зависит от многих параметров, включающих в себя скорость вращения вала, коэффициент трения, термо-механические свойства элементов подшипниковой системы и, как следствие, величины результирующих контактных температур. Целью данного исследования является разработка расчётной модели работы бинарного подшипника скольжения «сухого трения» с полимерными цилиндрическими вставками, определения на ее основе распределения температур, эквивалентных и контактных напряжений в элементах подшипниковой системы и подбор оптимальных параметров подшипниковой системы, при которых достигается тепловой баланс. Статическая задача для комбинированного подшипника скольжения с учётом тепловыделения от трения была исследована в работе [1], динамическая термоупругая задача о вращении вала в однослойном подшипнике из бронзы была исследована в работе [2], двухслойного с антифрикционным покрытием в.
Czasopismo
Rocznik
Strony
73--81
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
  • Rostov State Transport University Narodnogo Opolcheniya sq. 2, Rostov-on-Don, 344038 Russia
  • Rostov State Transport University Narodnogo Opolcheniya sq. 2, Rostov-on-Don, 344038 Russia
autor
  • Southern Federal University B. Sadovaya 105/42, Rostov-on-Don, 344006 Russia
autor
  • Southern Federal University B. Sadovaya 105/42, Rostov-on-Don, 344006 Russia
autor
  • Southern Federal University B. Sadovaya 105/42, Rostov-on-Don, 344006 Russia
Bibliografia
  • 1. Колосова, Е.М. Конечно-элементное моделирование контактного взаимодействия в комбинированном подшипнике скольжения с учетом тепловыделения от трения. Известия Вузов Сев.-Кавказс. рег. техн. наук. 2010. No. 5. P. 35-39. [In Russian: Kolosova, E.M. Finite-element simulation of contact interaction in combined sliding bearing by considering friction heat radiation. Izv. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg., Ser. Tekhn. Nauk].
  • 2. Колосова, Е.М. & Ляпин, А.А. & Чебаков, М.И. Расчет термоупругого контактного взаимодействия в подшипнике скольжения с учетом трения. Известия Вузов Сев.-Кавказс. рег. Серия техн. наук. 2014. No. 6. P. 73-76. [In Russian: Kolosova, E.M., Lyapin, A.A., Chebakov, M.I. Calculation of thermoelastic contact interaction in sliding bearing considering the friction. Radioelectronics North-Kavkazs. reg. Series tech. Sciences].
  • 3. Kolesnikov, V.I. & Kolosova, E.M. & Chebakov, M.I. Simulation of a Nonstationary Contact in a Sliding Bearing with Allowance for Frictional Heating and Convective Heat Transfer. Journal of Machinery Manufacture and Reliability. 2016. Vol. 45. No. 2. P. 156-162.
  • 4. Александров, В.М. Определение контактных температур в цилиндрическом сочленении. Известия Российской академии наук. Механика твердого тела. 2010. No. 5. P. 86-88. [In Russian: Alexandrov, V.M. The way to detect contact temperatures in cylindrical jointing. Izv. Russ. Akad. Nauk. Mekh. Tverd. Tela].
  • 5. Губарева, Е.А. & Мозжорина, Т.Ю. & Щетинин, А.Н. Моделирование взаимодействия цилиндрических и сферических тел с покрытиями при износе и тепловыделении. Инженерный журнал: наука и инновации. 2014. No. 3(27). P. 5. [In Russian: Gubareva, E.A. & Mozzhorina, T.Yu. & Schetinin, A.N. The way to simulate interactions between cylindrical and spherical bodies with coatings under wear and heat radiation. Inzh. Zh.: Nauka Innov].
  • 6. Дроздов, Ю.Н. & Надеин, В.А. & Пучков, В.Н. & Пучков, М.В. Трение и ресурс цилиндрических подшипников скольжения, работающих без смазки. Проблемы машиностроения и надежности машин. 2006. No 4. P. 72-78. [In Russian: Drozdov, Y.N. & Nadein, V.A. & Puchkov, V.N. & Puchkov, M.V. Friction and life time of cylindrical friction bearings operated without lubricants. J. Mach. Manuf. Reliab].
  • 7. Tzanakis, I. & Conte, M. & Hadfield, M. & Stolarski, T.A. Experimental and analytical thermal study of PTFE composite sliding against high carbon steel as a function of the surface roughness, sliding velocity and applied load. Wear. 2013. No. 303. P. 154-168.
  • 8. Liwen, M. & Yijun, S. & Xin, F. & Jiahua, Z. & Xiaohua, L. The effect of thermal conductivity and friction coefficient on the contact temperature of polyimide composites: Experimental and finite element simulation. Tribology International. 2012. No. 53. P. 45-52.
  • 9. Ali, R. & Wouter, O. & Van Paepegem, W. & De Baets, P. & Degrieck, J. Experimental study and numerical simulation of the large-scale testing of polymeric composite journal bearings: Three-dimensional and dynamic modeling. Wear. 2011. No. 270. P. 431-438.
  • 10. Imado, K. & Miura, A. & Kido, Y. Influence of testing method on the contact pressure distribution and its effect on the coefficient of friction in polymeric bearing. Tribology International. 2007. No. 40. P. 390-396.
  • 11. Komanduri, R. & Bing Hou, Z. Thermal analysis of dry sleeve bearings - a comparison between analytical, numerical (finite element) and experimental results. Tribology International. 2001. No. 34. P. 145-160.
  • 12. Колесников, В.И. Теплофизические процессы в металлополимерных трибосистемах. Москва: Наука. 2003. 279 p. [In Russian: Kolesnikov, V.I. Thermal processes in metal tribosystems. Moscow: Nauka].
  • 13. Demirsi, M.T. & Duzcukoglu, H. Wear behaviors of Polytetrafluoroethylene and glass fiber reinforced Polyamide 66 journal bearings. Materials and Design. 2014. Vol. 57. P. 560-567.
  • 14. Taylor, J.C. & Stanton, J.F. Friction coefficients for stainless steel/ptfe (teflon) bearings. Final Research Report WisDOT Project ID 0092-08-13 Report No. WHRP 10-01. Department of Civil Engineering, University of Washington. 2010. 126 p.
  • 15. Новацкий, В. Динамические задачи термоупругости. Москва: Мир. 1970. 253 p. [In Russian: Nowacki, W. Dynamic Problems of Thermoelasticity. Moscow: Mir].
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2ea24e0-4dec-4b65-bcae-21282b2047de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.