
JAISCR, 2019, Vol. 9, No. 4, pp. 267

COLLISION-FREE AUTONOMOUS ROBOT NAVIGATION
IN UNKNOWN ENVIRONMENTS UTILIZING PSO FOR

PATH PLANNING

Evan Krell∗, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

Department of Computing Sciences, Texas A&M University-Corpus Christi,
Corpus Christi, TX 78412, USA

∗E-mail: ekrell@islander.tamucc.edu

Submitted: 17th June 2018; Accepted: 12th May 2019

Abstract

The autonomous navigation of robots in unknown environments is a challenge since
it needs the integration of a several subsystems to implement different functionality. It
needs drawing a map of the environment, robot map localization, motion planning or path
following, implementing the path in real-world, and many others; all have to be imple-
mented simultaneously. Thus, the development of autonomous robot navigation (ARN)
problem is essential for the growth of the robotics field of research. In this paper, we
present a simulation of a swarm intelligence method is known as Particle Swarm Opti-
mization (PSO) to develop an ARN system that can navigate in an unknown environment,
reaching a pre-defined goal and become collision-free. The proposed system is built such
that each subsystem manipulates a specific task which integrated to achieve the robot
mission. PSO is used to optimize the robot path by providing several waypoints that min-
imize the robot traveling distance. The Gazebo simulator was used to test the response
of the system under various envirvector representing a solution to the optimization prob-
lem.onmental conditions. The proposed ARN system maintained robust navigation and
avoided the obstacles in different unknown environments. vector representing a solution
to the optimization problem.
Keywords: mobile robot, particle swarm optimization, path planning

1 Introduction

An autonomous robot is a physical agent that
interacts with its environment to independently ful-
fill a mission [11]. It should be able to follow a
path from a start to a goal without collision with ob-
stacles in an unknown environment. Autonomous
robots perform tasks in unstructured environments
and choose their independent decisions as a func-
tion of the given goal, such as in package delivery,
cleaning, autonomous car, surveillance, and search
and rescue operations. The tendency is to provide

robots with extra autonomy, which means that a
robot can accomplish missions with little human as-
sistance.

Ghosh et al. [14] compared two metaheuristic
algorithms: bat algorithm and flower pollination al-
gorithm (FPA). FPA was shown to perform better
both in path distance and path following execution
time. Unlike the vast majority of metaheuristic path
planning research, real-time experiments were im-
plemented using ARDUINO-based robots. In [8],
the authors presented a real robot navigation system
for path following implemented using GA and arti-

 – 282
10.2478/jaiscr-2019-0008

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

268 Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

ficial bee colony algorithm. Experiments were done
where the robot is allowed diagonal movements that
come extremely close to the walls and corners. GAs
shows better results in this case. In 2006, Chen and
Li [9] modified the typical path planning formula-
tion to emphasize smooth paths. They used a multi-
objective fitness function considering both distance
and smoothness as two objectives. Paths are gen-
erated as higher-order polynomials instead of a se-
quence of coordinate points. The experiments were
done in a simulated 2D environment with static ob-
stacles.

Sheta et. al. [4] demonstrate a system where
GA path planning is applied to static environments.
Using Euclidean distance, the shortest path to the
goal is often touching a corner, which can be chal-
lenging to maneuver. Thus, the robot was restricted
to row-wise and column-wise movements to avoid
dangerous diagonals. This sacrifices optimality
but ensures feasible paths that the robot can tra-
verse. A similar approach [24] with restricted grid
movement uses movement rules suited for multi-
directional movement for complex environments,
and the objective of the fitness function is to min-
imize the distance as well as the number of turns.

In [3], the authors presented a mobile robot nav-
igation system that can deal with a hard task which
requires avoiding both static and dynamic objects.
A local map was initially made using a mounted
ultrasonic sensor. This map offers the position of
the nearest obstacles in the scene. An initial path is
created for the robot navigation based on the initial
local map. As soon as the robot starts its trajectory
in real indoor environments with obstacles, the sen-
sor continuously senses and updates the occupancy
map.

A real robot system was shown in 2016 [1]. The
author presented a hybrid algorithm of PSO and
Gravitational Search Algorithm (GSA) was used,
where the fitness function includes the fitness val-
ues of both algorithms. With the combined fitness,
the authors aimed to take advantage of the exploita-
tion of PSO and the exploration of GSA. The focus
was on improving the solutions rather than handling
complex environments, so planning used a global
map of the static environment. Multiple robots were
handled by a centralized solver.

Dynamic obstacles were also addressed by Raja
and Pugazhenthi [21]. Instead of reacting to unex-

pected obstacles, dynamic obstacle movement is in-
corporated into the path planning problem. This ne-
cessitates that the future trajectories of the obstacles
are known. Also, each obstacle’s shape is simpli-
fied by representing it with a circle. A similar ap-
proach was considered in [19] where dynamic ob-
stacles move with probability functions. All obsta-
cles were also presented as circles. In [18], a hybrid
planning scheme was presented. In this study, PSO
was used to generate the overall path, while proba-
bilistic roadmaps (PRM) was used to refine the path
around obstacles. A real-world robot demonstrated
the effectiveness of the proposed planning schema.

Dynamic obstacles were addressed in 2017 by
replanning whenever collision risks were detected
[7]. The robot had a global view of the environ-
ment, but with uncertainty in the obstacle positions.
The high cost of planning limits its effectiveness
for reactive planning. To overcome this, a vector-
ized implementation of PSO was implemented that
was demonstrated to be significantly more efficient
by avoiding the loops used in the typical evalua-
tion of the fitness function. Multiple agents were
handled in the decentralized system by considering
other agents as dynamic obstacles.

The goal of this research is two-fold.

– Map-building problem: Navigating through an
environment required a map. The map can be
used to locate both the start and goal positions.
It can also be used to design a path between the
robot’s position and the goal position. Unfortu-
nately, in many cases, this map does not exist
early before navigation. Consequently, the robot
must create its particular map in the unknown
unstructured environment. Therefore, we must
be able to both locate the robot and make the
map at the same time. We plan to solve this
problem via the use of LIDAR sensor. The sim-
ulated robot has odometer for self-localization
and a laser scanner for detecting the range from
the robot to obstacles within the scanner’s ra-
dius. As the robot moves, the laser sensor scans
the environment. The created map needs to be
sufficient to avoid navigation errors.

– Path Planning in unknown environments:
This problem is significant to solve because it
disturbs the optimality of the path length and ex-
tensiveness of navigation task (i.e., approaching

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

269Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

ficial bee colony algorithm. Experiments were done
where the robot is allowed diagonal movements that
come extremely close to the walls and corners. GAs
shows better results in this case. In 2006, Chen and
Li [9] modified the typical path planning formula-
tion to emphasize smooth paths. They used a multi-
objective fitness function considering both distance
and smoothness as two objectives. Paths are gen-
erated as higher-order polynomials instead of a se-
quence of coordinate points. The experiments were
done in a simulated 2D environment with static ob-
stacles.

Sheta et. al. [4] demonstrate a system where
GA path planning is applied to static environments.
Using Euclidean distance, the shortest path to the
goal is often touching a corner, which can be chal-
lenging to maneuver. Thus, the robot was restricted
to row-wise and column-wise movements to avoid
dangerous diagonals. This sacrifices optimality
but ensures feasible paths that the robot can tra-
verse. A similar approach [24] with restricted grid
movement uses movement rules suited for multi-
directional movement for complex environments,
and the objective of the fitness function is to min-
imize the distance as well as the number of turns.

In [3], the authors presented a mobile robot nav-
igation system that can deal with a hard task which
requires avoiding both static and dynamic objects.
A local map was initially made using a mounted
ultrasonic sensor. This map offers the position of
the nearest obstacles in the scene. An initial path is
created for the robot navigation based on the initial
local map. As soon as the robot starts its trajectory
in real indoor environments with obstacles, the sen-
sor continuously senses and updates the occupancy
map.

A real robot system was shown in 2016 [1]. The
author presented a hybrid algorithm of PSO and
Gravitational Search Algorithm (GSA) was used,
where the fitness function includes the fitness val-
ues of both algorithms. With the combined fitness,
the authors aimed to take advantage of the exploita-
tion of PSO and the exploration of GSA. The focus
was on improving the solutions rather than handling
complex environments, so planning used a global
map of the static environment. Multiple robots were
handled by a centralized solver.

Dynamic obstacles were also addressed by Raja
and Pugazhenthi [21]. Instead of reacting to unex-

pected obstacles, dynamic obstacle movement is in-
corporated into the path planning problem. This ne-
cessitates that the future trajectories of the obstacles
are known. Also, each obstacle’s shape is simpli-
fied by representing it with a circle. A similar ap-
proach was considered in [19] where dynamic ob-
stacles move with probability functions. All obsta-
cles were also presented as circles. In [18], a hybrid
planning scheme was presented. In this study, PSO
was used to generate the overall path, while proba-
bilistic roadmaps (PRM) was used to refine the path
around obstacles. A real-world robot demonstrated
the effectiveness of the proposed planning schema.

Dynamic obstacles were addressed in 2017 by
replanning whenever collision risks were detected
[7]. The robot had a global view of the environ-
ment, but with uncertainty in the obstacle positions.
The high cost of planning limits its effectiveness
for reactive planning. To overcome this, a vector-
ized implementation of PSO was implemented that
was demonstrated to be significantly more efficient
by avoiding the loops used in the typical evalua-
tion of the fitness function. Multiple agents were
handled in the decentralized system by considering
other agents as dynamic obstacles.

The goal of this research is two-fold.

– Map-building problem: Navigating through an
environment required a map. The map can be
used to locate both the start and goal positions.
It can also be used to design a path between the
robot’s position and the goal position. Unfortu-
nately, in many cases, this map does not exist
early before navigation. Consequently, the robot
must create its particular map in the unknown
unstructured environment. Therefore, we must
be able to both locate the robot and make the
map at the same time. We plan to solve this
problem via the use of LIDAR sensor. The sim-
ulated robot has odometer for self-localization
and a laser scanner for detecting the range from
the robot to obstacles within the scanner’s ra-
dius. As the robot moves, the laser sensor scans
the environment. The created map needs to be
sufficient to avoid navigation errors.

– Path Planning in unknown environments:
This problem is significant to solve because it
disturbs the optimality of the path length and ex-
tensiveness of navigation task (i.e., approaching

COLLISION-FREE AUTONOMOUS ROBOT NAVIGATION IN. . .

the goal position when a solution exists). We
present a method to select the optimal path based
on a set of waypoints selected by PSO. These
waypoints are optimized such that they mini-
mize the distance the robot has to travel from
a start to end point.

The system proposed here falls in between
the 2D simulated experiments and those with real
robots. A 3D physics-based environment is used
for simulation. This means that the generated paths
must be feasible given the physical dimensions and
dynamics of the robot. Even systems using real
robots often do so with a given map. The simulated
robot here has initially no knowledge of the static
environment and builds a map using a laser sensor
while exploring before the path planning process.
Emphasis is on ensuring that the robot can operate
safely in complex indoor rooms with narrow pas-
sages and concave shapes.

This paper is organized as follows. In Section 2,
PSO is described. Section 3 presents an overview of
the proposed autonomous robot navigation system.
Section 4 describes the experimental environment
configuration, followed by experimental results in
Section 5. Finally, conclusions and future work are
given in Section 6.

2 Particle Swarm Optimization

PSO is a biologically-inspired metaheuristic op-
timization technique inspired by colony behavior in
nature [2]. We use a PSO library written by Kyri-
akos Kentzoglanakis [16]. The library allows a pro-
grammer to write a fitness function that will be op-
timized by using the PSO algorithm.

PSO implements a single group of social parti-
cles that use their collective information to find the
best resources. The environment that the particles
explore is the search space of the problem, and a
fitness function measures the desirability of a point.
Particles are described by a position and a velocity
which are adjusted over the iterations. These prop-
erties can be improved in two possible ways, one of
which is by observing the best of the entire popu-
lation. The best location so far is broadcast to all
members. The second means of learning is keeping
track of its history. To promote exploring the space
and avoiding premature convergence, the particles

are influenced by the global best, personal best and
some randomization. In each iteration, the particles
should move closer to the optimal solution.

The process is complete when the particles con-
verge or reach a time or iteration limit. Particles ex-
change information with their neighborhood parti-
cles to memorize their best collective position. Us-
ing these properties, each particle updates its posi-
tion. Equations 1 and 2 are used for updating the ith
particle in the kth iteration, described by velocity V k

i
and position Xk

i . Each particle is an n-dimensional
vector representing a solution to the optimization
problem.

V k
i =wV k−1

i + c1R1(Bk−1
i −Xk−1

i)

+c2R2(Gk−1
i −Xk−1

i).
(1)

Xk
i = Xk−1

i +V k
i , (2)

where:

– V k
i : n-dimensional velocity i at iteration k

– Xk
i : n-dimensional position i at iteration k

– w: inertia weight

– c1,c2: cognitive and social coefficients

– R1,R2: n-dimensional random numbers

– Bk
i : local best position at iteration k

– Gk
i : global best position reached by the neigh-

borhood of particle i at iteration k

solution.
The process is complete when the particles

converge or reach a time or iteration limit. Par-
ticles exchange information with their neighbor-
hood particles to memorize their best collective
position. Using these properties, each particle
updates its position. Equations 1 and 2 are used
for updating the ith particle in the kth iteration,
described by velocity V k

i and position Xk
i . Each

particle is an n-dimensional vector representing
a solution to the optimization problem.

V k
i = wV k−1

i + c1R1(Bk−1
i − Xk−1

i)
+ c2R2(Gk−1

i − Xk−1
i) (1)

Xk
i = Xk−1

i + V k
i (2)

Where:

• V k
i : n-dimensional velocity i at iteration k

• Xk
i : n-dimensional position i at iteration k

• w: inertia weight

• c1, c2: cognitive and social coefficients

• R1, R2: n-dimensional random numbers

• Bk
i : local best position at iteration k

• Gk
i : global best position reached by the

neighborhood of particle i at iteration k

Swarm size is the number of particles, each
of which has its own personal best solution. c1
and c2 are constant coefficients that weight the
influence of the local and global search, respec-
tively. The inertia weight w is used to bal-
ance the trade-off between convergence and ex-
ploration [5]. Initially, local search is emphasized
by setting a w to wmax. The value is linearly de-
creasing with each PSO iteration to eventually

Algorithm 1: PSO Algorithm
1 Begin PSO
2 Randomly initialize the position and

velocity of the particles: X0
i , V 0

i

3 While (Not terminating condition) do
4 For i = 1 to number of particles
5 Evaluate the fitness:= f(Xk−1

i)
6 Update Bk

i and Gk
i

7 Update velocity V k−1
i

8 Update position Xk−1
i

9 Next for
10 Update inertia weight w
11 End while
12 end PSO

reach wmin that emphasizes global search to pro-
mote convergence. The PSO algorithm is given
in Algorithm 1.

3 Proposed Robot System

In this section, we present the high level archi-
tecture of the proposed ARN system. The sys-
tem consists of a number of phases/components
each of which is responsible of implementing a
specific function. The integration of these set of
functions produce a layout of the system (See
Figure 1).

3.1 Mapping Unknown Environment
Using LIDAR

It is assumed that the environment is initially
unknown and needs to be mapped before path
planning. The simulated robot has an odome-
ter for self-localization and a laser scanner (LI-
DAR) for detecting the range from the robot to
obstacles within the scanner’s radius. As the

4

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

270 Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

Swarm size is the number of particles, each of
which has its own personal best solution. c1 and
c2 are constant coefficients that weight the influ-
ence of the local and global search, respectively.
The inertia weight w is used to balance the trade-
off between convergence and exploration [5]. Ini-
tially, local search is emphasized by setting a w to
wmax. The value is linearly decreasing with each
PSO iteration to eventually reach wmin that empha-
sizes global search to promote convergence. The
PSO algorithm is given in Algorithm 1.

3 Proposed Robot System

In this Section, we present the high level ar-
chitecture of the proposed ARN system. The sys-
tem consists of a several phases/components each
of which is responsible for implementing a specific
function. The integration of these set of functions
produce a layout of the system (See Figure 1).

3.1 Mapping Unknown Environment Us-
ing LIDAR

It is assumed that the environment is initially
unknown and needs to be mapped before path plan-
ning. The simulated robot has an odometer for self-
localization and a laser scanner (LIDAR) for de-
tecting the range from the robot to obstacles within
the scanner’s radius. As the robot moves, the laser
sensor scans the environment. The readings contin-
ually update an initially empty occupancy grid. The
mobile robot system has to fully explore the space
to cover the unmapped areas autonomously.

The TURTLEBOT robot is allowed to move
freely within the environment and generates a map
while avoiding obstacles. If the laser scanner de-
tects an obstacle ahead, the TURTLEBOT is pro-
grammed to turn away in a random direction and
moves forward. The goal of this strategy of ex-
ploration, random walk, is to avoid the problem of
making the robot move in circles which is common
with wall-following approaches. Though not priori-
tizing efficiency, it manages to generate maps with-
out any apriori knowledge of the environment and
with a very low computational footprint. This strat-
egy is suitable for indoor environments that do not
experience frequent changes, because the additional
time of exploration, compared to slightly more so-

phisticated exploration schemes such as Closest
Frontier is dwarfed by the duration during which
the map remains accurate.

As was shown, the random walk is an effec-
tive for multi-robot exploration. A single added
robot is likely to speed up exploration significantly,
whereas robots using the same less naive method
tend to make the same decisions which results in
much exploration overlap. The trend is toward mul-
tiple robots operating in the same environment [12].
That random walk approaches the efficiency of
more informed algorithms as the number of robots
increases is demonstrated by Damer et al. [26].

3.2 Path Planning Using PSO

In this Section, we shall provide an overview of
how we shall utilize PSO as a search algorithm to
find the shortest path from a given start to the target
point in the unknown environment. To generate this
optimal path, PSO is used to pick the best multiple
waypoint path that minimizes the distance the robot
travels.

Path planning is the process of generating a se-
quence of action directives so that the robot can
reach a target destination. Path planning has re-
mained a challenge, despite numerous proposed
techniques, since it is NP-hard. Metaheuristic al-
gorithms have been demonstrated to drastically re-
duce the search space when finding the optimal path
[20, 22].

The proposed solution path is presented as
a sequence of waypoints, as shown in Figure
2. The path creation shall depend on the num-
ber of waypoints selected by the designer of the
system. Too many waypoints might help PSO
to find this optimal path but at the same time
might slow the convergence process to such an
optimal solution. Thus, our goal is to set up a
balance between the two goals. We should al-
ways remember that our goal is to reduce the dis-
tance the robot travels in the environment. The
proposed PSO representation shall be a sequence
of waypoints P, demonstrated in Equation 3.

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

271Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

Swarm size is the number of particles, each of
which has its own personal best solution. c1 and
c2 are constant coefficients that weight the influ-
ence of the local and global search, respectively.
The inertia weight w is used to balance the trade-
off between convergence and exploration [5]. Ini-
tially, local search is emphasized by setting a w to
wmax. The value is linearly decreasing with each
PSO iteration to eventually reach wmin that empha-
sizes global search to promote convergence. The
PSO algorithm is given in Algorithm 1.

3 Proposed Robot System

In this Section, we present the high level ar-
chitecture of the proposed ARN system. The sys-
tem consists of a several phases/components each
of which is responsible for implementing a specific
function. The integration of these set of functions
produce a layout of the system (See Figure 1).

3.1 Mapping Unknown Environment Us-
ing LIDAR

It is assumed that the environment is initially
unknown and needs to be mapped before path plan-
ning. The simulated robot has an odometer for self-
localization and a laser scanner (LIDAR) for de-
tecting the range from the robot to obstacles within
the scanner’s radius. As the robot moves, the laser
sensor scans the environment. The readings contin-
ually update an initially empty occupancy grid. The
mobile robot system has to fully explore the space
to cover the unmapped areas autonomously.

The TURTLEBOT robot is allowed to move
freely within the environment and generates a map
while avoiding obstacles. If the laser scanner de-
tects an obstacle ahead, the TURTLEBOT is pro-
grammed to turn away in a random direction and
moves forward. The goal of this strategy of ex-
ploration, random walk, is to avoid the problem of
making the robot move in circles which is common
with wall-following approaches. Though not priori-
tizing efficiency, it manages to generate maps with-
out any apriori knowledge of the environment and
with a very low computational footprint. This strat-
egy is suitable for indoor environments that do not
experience frequent changes, because the additional
time of exploration, compared to slightly more so-

phisticated exploration schemes such as Closest
Frontier is dwarfed by the duration during which
the map remains accurate.

As was shown, the random walk is an effec-
tive for multi-robot exploration. A single added
robot is likely to speed up exploration significantly,
whereas robots using the same less naive method
tend to make the same decisions which results in
much exploration overlap. The trend is toward mul-
tiple robots operating in the same environment [12].
That random walk approaches the efficiency of
more informed algorithms as the number of robots
increases is demonstrated by Damer et al. [26].

3.2 Path Planning Using PSO

In this Section, we shall provide an overview of
how we shall utilize PSO as a search algorithm to
find the shortest path from a given start to the target
point in the unknown environment. To generate this
optimal path, PSO is used to pick the best multiple
waypoint path that minimizes the distance the robot
travels.

Path planning is the process of generating a se-
quence of action directives so that the robot can
reach a target destination. Path planning has re-
mained a challenge, despite numerous proposed
techniques, since it is NP-hard. Metaheuristic al-
gorithms have been demonstrated to drastically re-
duce the search space when finding the optimal path
[20, 22].

The proposed solution path is presented as
a sequence of waypoints, as shown in Figure
2. The path creation shall depend on the num-
ber of waypoints selected by the designer of the
system. Too many waypoints might help PSO
to find this optimal path but at the same time
might slow the convergence process to such an
optimal solution. Thus, our goal is to set up a
balance between the two goals. We should al-
ways remember that our goal is to reduce the dis-
tance the robot travels in the environment. The
proposed PSO representation shall be a sequence
of waypoints P, demonstrated in Equation 3.

COLLISION-FREE AUTONOMOUS ROBOT NAVIGATION IN. . .

Figure 1. Stages of the proposed autonomous robot navigation system

Figure 2. Examples of two paths based a
sequences of waypoints between the start and goal
locations. The dotted path is less efficient since it

is longer in distance.

P = [(x1,y1),(x2,y2), ...,(xn,yn)]. (3)

The proposed fitness function to evaluate the
quality of a candidate solution is the Euclidean dis-
tance, as given in Equation 4). The overall path
distance, PathD, is the summation of these dis-
tances (See Equation 5).

D(xi,yi,x j,y j) =
√

(xi − x j)2 +(yi − y j)2, (4)

PD =
n−1

∑
i=1

D(< xi,yi >,< xi+1,yi+1 >). (5)

Collisions along the path are calculated by the
summation of the number of obstacles between
each adjacent waypoints, called PathO (See Equa-
tion 6). This is a summation of the number of oc-
cupied cells in the occupancy grid between adjacent
waypoint. β represents Bresenham’s line algorithm,
which is used to count occupied cells in a straight
line between two points [25]. This algorithm was
originally designed for drawing lines in a bitmap
image, but can be generalized to get a list of every
cell that lies between the points. Each cell’s occu-
pancy is checked to calculate the total number of
occupied cells.

PO =
n−1

∑
i=1

β(xi,yi,xi+1,yi+1). (6)

The adopted fitness function F used to mini-
mize the path from a start to target locations using
PSO is provided in Equation 7.

Fpath = PD +(PO)
2. (7)

3.3 Path Tracking Using Pure Pursuit

Once the actual position of the robot and its tar-
get position are well-defined on the map, it is then
essential to generate a trajectory between these two
points. Numerous methods were presented in the
literature and the selection is governed by each par-
ticular environment, the robot size, the payload sen-
sors and the maximum obstacle sizes. In the cir-
cumstance of a dynamic environment with unpre-
dictable movement of objects, which is typical for
community areas, the most suitable solution is to

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

272 Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

use an adaptive route planning strategy such that we
can avoid dynamic obstacles, while traveling to the
target destination.

We defined path tracking as the process of de-
termining the speed and steering settings of an au-
tonomous robot to follow a particular path based
on the waypoints generated by PSO. To create a
smooth path for the robot such that the robot can
avoid obstacles.

According to the proposed ARN system, we
suggest the use of the look-ahead path smoothing
algorithm known as the Pure Pursuit Path Tracking
Algorithm [10]. Pure pursuit was first presented in
1969 [23]. The algorithm was initially intended as a
method of geometrically find the curvature that will
direct the robot to a chosen path point, termed the
goal point. The implementation of the pure pursuit
idea is illustrated in Figure 3.

Figure 3. Description of the Pure Pursuit
algorithm [6]

The algorithm calculates the angular velocity
required to move the robot from its current posi-
tion in space to locate a look-ahead point in front
of the robot. We assume that the linear velocity of
the robot is constant. The algorithm then moves the
look-ahead point on the path according to the cur-
rent position of the robot until the last point of the
path. We can imagine that the robot is regularly
chasing a point in front of it.

Assume the current robot position in (X ,Y) in
the environment is given. And, the constant look-
ahead distance is L with the goal is to find the look-
ahead point (XLA,YLA) on the path. The algorithm
will compute the radius RTrack of the arc that con-
nects the current location to the look-ahead distance
point. Based on the shown two rectangular triangles
given in Figure 3, we can formulate the following
equations as given in [6]

x2
L + y2

L = L2, (8)

a2
L + y2

L = R2
Track, (9)

xL +a = RTrack, (10)

Substituting the value of a from Equation 10 in
Equation 9 we get that

(RTrack − xL)
2 + y2

L =R2
Track,

R2
Track −2Rx

TrackL + x2
L + y2

L =R2
Track,

R2
Track −2Rx

TrackL +L2 =R2
Track.

Finally, we conclude that

R2
Track =

L2

2xL
. (11)

RTrack value governs the actual arc radius the
robot has to follow with a reciprocal value 1/RTrack.

4 Environmental Setup

We divide space into an occupancy grid, where
cells are either free or blocked. The grid is binary
with a 0 indicating the cell is empty or 1 that the cell
is occupied. We used a grid size of 5cm2. We used
a laser scanner to detect objects which has some un-
certainty.

To reduce the risk of collisions inflating the size
of an object can be used. The required inflation
size depends on the robot, the grid scale, and the
turning radius of the robot. The inflation should be
large enough to avoid a collision, but not so large
that nearby obstacles be joined into a single obsta-
cle when a free and safe path exists between them.
We used inflation of 10cm2 or two grid cells.

Our experiments are performed in two Gazebo
environments called Doorways and Open. Both en-
vironments have a 20 × 20-meter surface with 3D
obstacles and a defined target location. 2D coordi-
nates in path planning refer to the ground plane of
the space. The two proposed environmental setup
are shown in Figures 4 and 5, respectively.

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

273Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

use an adaptive route planning strategy such that we
can avoid dynamic obstacles, while traveling to the
target destination.

We defined path tracking as the process of de-
termining the speed and steering settings of an au-
tonomous robot to follow a particular path based
on the waypoints generated by PSO. To create a
smooth path for the robot such that the robot can
avoid obstacles.

According to the proposed ARN system, we
suggest the use of the look-ahead path smoothing
algorithm known as the Pure Pursuit Path Tracking
Algorithm [10]. Pure pursuit was first presented in
1969 [23]. The algorithm was initially intended as a
method of geometrically find the curvature that will
direct the robot to a chosen path point, termed the
goal point. The implementation of the pure pursuit
idea is illustrated in Figure 3.

Figure 3. Description of the Pure Pursuit
algorithm [6]

The algorithm calculates the angular velocity
required to move the robot from its current posi-
tion in space to locate a look-ahead point in front
of the robot. We assume that the linear velocity of
the robot is constant. The algorithm then moves the
look-ahead point on the path according to the cur-
rent position of the robot until the last point of the
path. We can imagine that the robot is regularly
chasing a point in front of it.

Assume the current robot position in (X ,Y) in
the environment is given. And, the constant look-
ahead distance is L with the goal is to find the look-
ahead point (XLA,YLA) on the path. The algorithm
will compute the radius RTrack of the arc that con-
nects the current location to the look-ahead distance
point. Based on the shown two rectangular triangles
given in Figure 3, we can formulate the following
equations as given in [6]

x2
L + y2

L = L2, (8)

a2
L + y2

L = R2
Track, (9)

xL +a = RTrack, (10)

Substituting the value of a from Equation 10 in
Equation 9 we get that

(RTrack − xL)
2 + y2

L =R2
Track,

R2
Track −2Rx

TrackL + x2
L + y2

L =R2
Track,

R2
Track −2Rx

TrackL +L2 =R2
Track.

Finally, we conclude that

R2
Track =

L2

2xL
. (11)

RTrack value governs the actual arc radius the
robot has to follow with a reciprocal value 1/RTrack.

4 Environmental Setup

We divide space into an occupancy grid, where
cells are either free or blocked. The grid is binary
with a 0 indicating the cell is empty or 1 that the cell
is occupied. We used a grid size of 5cm2. We used
a laser scanner to detect objects which has some un-
certainty.

To reduce the risk of collisions inflating the size
of an object can be used. The required inflation
size depends on the robot, the grid scale, and the
turning radius of the robot. The inflation should be
large enough to avoid a collision, but not so large
that nearby obstacles be joined into a single obsta-
cle when a free and safe path exists between them.
We used inflation of 10cm2 or two grid cells.

Our experiments are performed in two Gazebo
environments called Doorways and Open. Both en-
vironments have a 20 × 20-meter surface with 3D
obstacles and a defined target location. 2D coordi-
nates in path planning refer to the ground plane of
the space. The two proposed environmental setup
are shown in Figures 4 and 5, respectively.

COLLISION-FREE AUTONOMOUS ROBOT NAVIGATION IN. . .

Figure 4. The Doorways environment

Figure 5. The Open environment

– The Doorways has two narrow connected hall-
ways and passages between them. A collision-
free path between hallways has to go around the
wall. The straight path across the wall is a local
optimum. If PSO lacks sufficient exploration, it
may not find the openings and instead choose the
infeasible solution across the wall.

– The Open setup has an open space with scattered
obstacles. Whereas the feasible optimal solution
found in the Doorways environment was tightly
bounded by the narrow passages, there are many
possibilities for feasible solutions in Open. The
experiment goal is to see if, given a range of fea-
sible solutions, PSO can evolve the optimal path
with minimum distance.

Our proposed ARN system is tested using a
TURTLEBOT robot in Gazebo 3D simulator [17].
Gazebo is a 3D robot simulation software package

that elevates robot simulation closer to a real robot
compared to a typical 2D approach [17]. It supports
dynamic physical models, 3D rendering of the envi-
ronment, multiple robots, and simulation of sensor
noise. These features make Gazebo results much
more realistic than those where the robot is merely
a particle in a plane.

This robot can move forward or turn on its axis
[13]. The ability to change heading in place is
suited for cramped indoor environments. An image
of the TURTLEBOT is shown in Figure 6.

Figure 6. A TURTLEBOT with a laser scanner

5 Experimental Results

Experiments are performed to evaluate the navi-
gation system. An experiment begins by placing the
TURTLEBOT in any unobstructed location within a
3D Gazebo environment. Then, the TURTLEBOT

begins the exploration and mapping phase. An ini-
tially empty map is populated with the location of
obstacles in real time, based on laser scanner inputs.
Exploration ends after 5 minutes. If the exploration
stage is successful, then the occupancy map con-
tains all obstacles exteriors since the laser scanner
cannot see into the obstacle interior.

The environments in these experiments are as-
sumed to be static, and the TURTLEBOT uses the
maps for path planning. During the exploration
phase, there is no target. The concept is to create
a map that can be used in the future for path plan-
ning tasks.

In the path planning phase, the TURTLEBOT

uses PSO to generate a solution path as a sequence
of waypoints between the start and target locations
in the environment. Moving a 3D blue ball inside
Gazebo with the mouse allows a user to specify
the target position, without having to type the co-

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

274 Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

ordinates. Path planning generates a solution path
between the TURTLEBOT and blue ball. A feasi-
ble path is one where the robot can reach the target
without collision and an optimal path is both feasi-
ble and minimal distance.

Finally, the solution path is used for the path
tracking phase so that the TURTLEBOT will move to
the target. Path tracking is done by traveling from
waypoint to waypoint until reaching the target.

5.1 Map Generation Results

The robot was able to generate maps after the
5-minute exploration phase for both the Doorways
and Open environments. The exploration phase re-
sulted in the occupancy grids shown in Figure 7 and
Figure 8. Gazebo simulates noisy sensors, so minor
imperfection can be seen. The major details of both
spaces appear to be successfully captured and suit-
able for path planning. The minor discrepancy be-
tween actual and observed location is expected to be
handled by a 2-pixel inflation previously described.

Figure 7. The Doorways environment: Occupancy
grid generated by robot using laser scanner

Figure 8. The Open environment: Occupancy grid
generated by robot using laser scanner

5.2 Path Planning Results

In this Section, we describe the developed ex-
perimental results using PSO for robot path plan-
ning. PSO was used to evolve the possible set of
waypoints path P from a start to target locations
(see Equation 3). PSO used the Euclidean distance
as a criteria to minimize. Using the maps generated
in the first phase of the proposed ARN system, the
TURTLEBOT used PSO to generate the shortest path
from start to target.

According to our simulation, the robot was ob-
served to arrive at the target position successfully.
PSO generated best paths for all four cases consid-
ered are shown in Figures 5.2.1 to Figure 5.2.1. The
PSO parameters used for the experiments are given
in Table 1.

Table 1. PSO parameters used

Parameter Value
Number of iterations 1500
Swarm size 500
c1 1.496
c2 1.494
wmin 0.3
wmax 0.7298

5.2.1 Performance with various number of
waypoints:

Determining the optimal number of waypoints
is an optimization problem. Here, it is clear that
at least two waypoints are needed for the required

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

275Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

ordinates. Path planning generates a solution path
between the TURTLEBOT and blue ball. A feasi-
ble path is one where the robot can reach the target
without collision and an optimal path is both feasi-
ble and minimal distance.

Finally, the solution path is used for the path
tracking phase so that the TURTLEBOT will move to
the target. Path tracking is done by traveling from
waypoint to waypoint until reaching the target.

5.1 Map Generation Results

The robot was able to generate maps after the
5-minute exploration phase for both the Doorways
and Open environments. The exploration phase re-
sulted in the occupancy grids shown in Figure 7 and
Figure 8. Gazebo simulates noisy sensors, so minor
imperfection can be seen. The major details of both
spaces appear to be successfully captured and suit-
able for path planning. The minor discrepancy be-
tween actual and observed location is expected to be
handled by a 2-pixel inflation previously described.

Figure 7. The Doorways environment: Occupancy
grid generated by robot using laser scanner

Figure 8. The Open environment: Occupancy grid
generated by robot using laser scanner

5.2 Path Planning Results

In this Section, we describe the developed ex-
perimental results using PSO for robot path plan-
ning. PSO was used to evolve the possible set of
waypoints path P from a start to target locations
(see Equation 3). PSO used the Euclidean distance
as a criteria to minimize. Using the maps generated
in the first phase of the proposed ARN system, the
TURTLEBOT used PSO to generate the shortest path
from start to target.

According to our simulation, the robot was ob-
served to arrive at the target position successfully.
PSO generated best paths for all four cases consid-
ered are shown in Figures 5.2.1 to Figure 5.2.1. The
PSO parameters used for the experiments are given
in Table 1.

Table 1. PSO parameters used

Parameter Value
Number of iterations 1500
Swarm size 500
c1 1.496
c2 1.494
wmin 0.3
wmax 0.7298

5.2.1 Performance with various number of
waypoints:

Determining the optimal number of waypoints
is an optimization problem. Here, it is clear that
at least two waypoints are needed for the required

COLLISION-FREE AUTONOMOUS ROBOT NAVIGATION IN. . .

number of turns. All the solution paths found
are effective at distance minimizing and collision-
avoidance.

(a) Experiment 1 PSO solution path

(b) Experiment 2 PSO solution path

Figure 9. Results of path planning in the
Doorways environment

We run PSO for 50 experiments using three,
four and five waypoints as shown in Figure 5.2.1.
While the non-determinism of PSO suggests that
the outcome will differ across runs, there should be
a bound on the variables such that the optimal path
is consistently chosen. The best, worst, and aver-
age convergence curves are shown in Figures 5.2.2,
5.2.2, and 5.2.2 for three, four and five waypoints,
respectively.

Notice that in Figures 5.2.1, 5.2.1, and 5.2.1,
two waypoints are overlapped. The waypoint sym-
bols in those cases are slightly offset for clarity,
but the actual waypoint’s coordinates are identical.

Such behavior indicates that more waypoints are be-
ing assigned than required for the problem. Addi-
tional waypoints increase the problem complexity
and runtime substantially.

(a) Experiment 1 PSO solution path

(b) Experiment 2 PSO solution path

Figure 10. Results of path planning in the Open
environment

5.2.2 Performance with a various number of it-
erations:

Recall that the objective is to minimize the fit-
ness, so a lower fitness (i.e., minimum distance)
value is better. The expectation is that the initial fit-
ness value of PSO will be very high since it is cal-
culated from the initial random placement of par-
ticles. As the solution improves using local and
global information, the particles should converge to
an optimal solution. This behavior is demonstrated
in Figures 5.2.2, 5.2.2, and 5.2.2. Notice that the
X-axis varies substantially across figures, increas-

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

276 Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

ing in range as the number of waypoints increases.
The best, worst, and average converge to approxi-
mately the same solution within 100 iterations us-
ing only 3 waypoints. It takes almost 10000 itera-
tions to observe the same when using 5 waypoints.
These results indicate that, while the number of it-
erations to do so may increase dramatically, in all
trials performed the solution converges to a tight fit-
ness bound.

(a) PSO convergence with three waypoints

(b) PSO convergence with four waypoints

(c) PSO convergence with five waypoints

Figure 11. PSO results while evolving three, four
and five waypoints

Further evidence of successful convergence is
the repetition of a solution over multiple iterations
as well as redundant waypoints in a solution, as seen
in Tables 2, 3, and 4. In each case, the final two
rows are repeated. These waypoints are shown in
the discrete occupancy grid space rather than the
continuous space of Gazebo. Notice that the final
solution when using five waypoints includes dupli-
cate waypoints. This redundancy indicates that five
waypoints are unnecessarily large.

Table 2. PSO path of three waypoints with various
iteration generations

Gen X1 Y1 X2 Y2 X3 Y3
1 46 84 61 144 10 89

100 93 124 94 128 120 148
200 106 127 105 131 120 146
300 112 116 114 140 120 146
400 112 112 116 142 120 146
500 112 112 116 142 120 146

Table 3. PSO path of four waypoints with various
iteration generations

Gen X1 Y1 X2 Y2 X3 Y3 X4 Y4
1 28 113 37 111 8 65 19 64

1000 85 116 104 120 93 112 144 115
5000 110 132 117 144 120 144 124 142

10000 110 110 116 143 121 144 124 141
15000 112 112 116 143 121 144 124 141
20000 112 112 116 142 119 144 123 143
25000 112 112 116 142 119 144 123 143

5.2.3 Performance with the optimal number of
waypoints:

Having determined that three waypoints was ef-
fective for experiment 1 in Doorways, the other ex-
periments were evaluated using 3 waypoints to see
if the result is transferable. Because different envi-
ronments and goals will affect the convergence rate,
each trial was allowed 5000 iterations. We run PSO
for 50 experiments to obtain the optimal values of
the waypoints. The calculated fitness value at 5000
iteration is shown in Table 5 with average, best, and
worst results for each experiment.

With 3 waypoints, a collision-free path was
generated in each experiment. Given the conver-
gence rate of experiment 1 in Doorways (see Figure
2), a very tight bound between the best and worst
runs was expected after 5000 iterations. This was
the case with the widest fitness range 10.256 and
the tightest 1.153. At the start of PSO, trials often
range in fitness over 100, as shown in Figures 2 -
4. 5000 iterations complete in under 30 seconds,
which is observed to be more than enough to ensure
high-quality solutions in these experiments. These
results suggest that despite very different obstacle
configurations, PSO waypoint parameters have the
potential to be reused when the number of required
turns is no larger than that required by the experi-

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

277Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

ing in range as the number of waypoints increases.
The best, worst, and average converge to approxi-
mately the same solution within 100 iterations us-
ing only 3 waypoints. It takes almost 10000 itera-
tions to observe the same when using 5 waypoints.
These results indicate that, while the number of it-
erations to do so may increase dramatically, in all
trials performed the solution converges to a tight fit-
ness bound.

(a) PSO convergence with three waypoints

(b) PSO convergence with four waypoints

(c) PSO convergence with five waypoints

Figure 11. PSO results while evolving three, four
and five waypoints

Further evidence of successful convergence is
the repetition of a solution over multiple iterations
as well as redundant waypoints in a solution, as seen
in Tables 2, 3, and 4. In each case, the final two
rows are repeated. These waypoints are shown in
the discrete occupancy grid space rather than the
continuous space of Gazebo. Notice that the final
solution when using five waypoints includes dupli-
cate waypoints. This redundancy indicates that five
waypoints are unnecessarily large.

Table 2. PSO path of three waypoints with various
iteration generations

Gen X1 Y1 X2 Y2 X3 Y3
1 46 84 61 144 10 89

100 93 124 94 128 120 148
200 106 127 105 131 120 146
300 112 116 114 140 120 146
400 112 112 116 142 120 146
500 112 112 116 142 120 146

Table 3. PSO path of four waypoints with various
iteration generations

Gen X1 Y1 X2 Y2 X3 Y3 X4 Y4
1 28 113 37 111 8 65 19 64

1000 85 116 104 120 93 112 144 115
5000 110 132 117 144 120 144 124 142
10000 110 110 116 143 121 144 124 141
15000 112 112 116 143 121 144 124 141
20000 112 112 116 142 119 144 123 143
25000 112 112 116 142 119 144 123 143

5.2.3 Performance with the optimal number of
waypoints:

Having determined that three waypoints was ef-
fective for experiment 1 in Doorways, the other ex-
periments were evaluated using 3 waypoints to see
if the result is transferable. Because different envi-
ronments and goals will affect the convergence rate,
each trial was allowed 5000 iterations. We run PSO
for 50 experiments to obtain the optimal values of
the waypoints. The calculated fitness value at 5000
iteration is shown in Table 5 with average, best, and
worst results for each experiment.

With 3 waypoints, a collision-free path was
generated in each experiment. Given the conver-
gence rate of experiment 1 in Doorways (see Figure
2), a very tight bound between the best and worst
runs was expected after 5000 iterations. This was
the case with the widest fitness range 10.256 and
the tightest 1.153. At the start of PSO, trials often
range in fitness over 100, as shown in Figures 2 -
4. 5000 iterations complete in under 30 seconds,
which is observed to be more than enough to ensure
high-quality solutions in these experiments. These
results suggest that despite very different obstacle
configurations, PSO waypoint parameters have the
potential to be reused when the number of required
turns is no larger than that required by the experi-

COLLISION-FREE AUTONOMOUS ROBOT NAVIGATION IN. . .

Table 4. PSO path of five waypoints with various iteration generations

Gen X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5
1 0 0 0 0 0 0 0 0 0 0

1000 110 104 106 102 100 100 97 101 95 101
5000 110 104 106 102 100 101 95 101 95 101
10000 109 135 118 144 135 140 136 138 135 136
15000 116 142 118 144 135 140 135 138 135 139
20000 116 142 118 144 135 140 135 138 135 139

ment where the parameter was determined.

Table 5. Results of running PSO using three
waypoints for the experiments using Doorways and

Open environment. 50 experiments with 5000
iterations results

Setup Experiment
Worst
Fitness

Average
Fitness

Best
Fitness

Doorways 1 (Fig. 5.2.1) 111.80 108.33 108.26
Doorways 2 (Fig. 5.2.1) 116.83 113.80 106.58
Open 1 (Fig. 5.2.1) 108.74 102.60 101.33
Open 2 (Fig. 5.2.1) 65.50 65.22 64.35

5.3 Path Tracking Results

The final phase is path tracking, where the
TURTLEBOT follows the solution path generated
in the path planning phase. To analyze PSO con-
vergence, more paths were generated in the stand-
alone PSO module than were evaluated within the
full system. As part of navigation, infeasible paths
are automatically rejected and planning occurs un-
til a feasible path is found. Here, feasibility refers
to the path planner’s detection of intersecting obsta-
cles in the occupancy grid. The path tracking exper-
iments are needed to ensure that the allowed paths
are truly feasible in the Gazebo environment, given
the TURTLEBOT’S dimensions and dynamics.

Ten path tracking trials were performed for the
two experiments in each setup for a total of forty
trials. In each case, the robot was observed to navi-
gate to the target location without collisions or any
other issues. The robot did approach the sides of the
doorways very closely in the Doorways setup; the
2-pixel expansion of the occupancy grid was barely
sufficient to avoid an accident in such narrow re-
gions.

5.4 Computational Complexity

PSO performs some number of iterations to
converge to an approximately optimal solution.
Thus, runtime performance depends on the time for
a single iteration and the number of iterations re-
quired. Both depend on the number of waypoints.
As has been demonstrated, increasing the number
of waypoints increases the dimensionality of the
problem and the number of iterations required to
converge. It remains to determine the runtime of
a single iteration concerning the number of way-
points.

Each iteration requires computing the fitness
function (Algorithm 7) as part of PSO (Algorithm
1). The complexity of the fitness function depends
on the number of waypoints because it has to evalu-
ate the path between adjacent waypoint pairs. This
requires summing the distance between each pair
as well as checking for obstacles at each cell in-
tersected by the line between waypoints. The dis-
tance summation is simply repeated calls of the Eu-
clidean distance, but checking for obstacles is more
involved. When waypoints are far apart, a large
number of cells need to be checked.

Overall, the complexity of a single iteration is
O(n) where n is the number of waypoints to search
for. But for a more detailed look at how the runtime
scales with the number of waypoints, Table 6 shows
the mean iteration time and the estimated and mea-
sured runtimes to complete 10,000 iterations. All
runtimes are based on processor time. The purpose
of comparing the estimated and measured overall
runtimes is to suggest that using the mean iteration
time is appropriate for estimating the runtime of a
given number of iterations.

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

278 Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

Table 6. The effect of the number of waypoints on
the runtime of each PSO iteration. The mean
iteration runtime is reliable enough to allow
estimating the runtime of a given number of

iterations.

Waypoints
Mean iter
time (ms)

Estimated 10000
iters (s)

10000
iters (s)

3 0.1141 11.41 11.43
4 0.1450 14.50 14.63
5 0.1719 17.19 17.51
6 0.1971 19.71 20.29
7 0.2298 22.98 23.94
8 0.2560 25.60 25.87
9 0.2821 28.21 31.81
10 0.3054 30.54 31.14
11 0.3391 33.91 33.41
12 0.3690 36.90 38.41
13 0.3879 38.79 38.75
14 0.4209 42.09 42.06
15 0.4533 45.33 45.10

Unlike the number of iterations needed to con-
verge, the per-iteration runtime is independent of
the environment and start/stop locations. Thus, an
estimate of the convergence duration can be made
for any scenario where an estimate of the required
iterations has been made. Table 7 gives the esti-
mated duration for convergence in experiment 1 in
the Doorway setup (see Figure 5.2.1). The esti-
mated required iterations are taken from the con-
vergence curves in Figures 5.2.2, 5.2.2, and 5.2.2
for 3, 4 and 5 waypoints, respectively.

Table 7. Runtimes for convergence can be
estimated using the runtime per iteration and
number of iterations to converge. Number of
required iterations is based on experiment in

Figure 5.2.1.

Waypoints
Required
Iterations

Estimated
Runtime (s)

3 100 11.4
4 350 50.75
5 50000 8595.00

5.5 PSO Parameter Sensitivity

The results discussed so far used the PSO pa-
rameters shown in Table 1. The values for c1, c2,
wmin, and wmax are the defaults of the PSO library
used [16]. The performance when using default

parameters is of interest because typical users are
expected to do little to no change. Even in litera-
ture where PSO or similar algorithms are used, pa-
rameter tuning is commonly absent (as observed by
Tewold et. al. [27]). As these algorithms become
increasingly available through convenient software
libraries, the barrier using such algorithms is very
low. It is encouraging to observe reliable conver-
gence to feasible, approximately optimal solutions
for the complicated path planning problem without
any modification of PSO parameters.

Figure 12. Environment setup for PSO parameter
testing

However, it is known that PSO is dependent on
its parameters and so next they are modified in an
attempt to increase performance. The PSO param-
eters are the cognitive coefficient c1, social coeffi-
cient c2, and inertia weight w.

Adopting the tuning parameters used in [15],
the parameters are restricted to c1 ∈ [0,4] and c2 ∈
[0,4]. Samples are uniformly selected with an in-
terval of 0.2. Each pair of values is tested with 10
trials. The mean, min, and max fitness of each pair
are plotted as well as the number of infeasible solu-
tions.

Figure 13 shows the topography of the parame-
ter space. The z-axis is the mean fitness over 10 ex-
periments, with valleys having the lowest (i.e., best)
fitness and peaks having the worst. Some observa-
tions include:

– The topography is complex with excellent so-
lutions (valleys) situated among tall high-fitness
peaks. This suggests complex relations between
c1 and c2.

– There is an overall behavior that shows stronger
performance with higher values of c1 and lower

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

279Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

Table 6. The effect of the number of waypoints on
the runtime of each PSO iteration. The mean
iteration runtime is reliable enough to allow
estimating the runtime of a given number of

iterations.

Waypoints
Mean iter
time (ms)

Estimated 10000
iters (s)

10000
iters (s)

3 0.1141 11.41 11.43
4 0.1450 14.50 14.63
5 0.1719 17.19 17.51
6 0.1971 19.71 20.29
7 0.2298 22.98 23.94
8 0.2560 25.60 25.87
9 0.2821 28.21 31.81
10 0.3054 30.54 31.14
11 0.3391 33.91 33.41
12 0.3690 36.90 38.41
13 0.3879 38.79 38.75
14 0.4209 42.09 42.06
15 0.4533 45.33 45.10

Unlike the number of iterations needed to con-
verge, the per-iteration runtime is independent of
the environment and start/stop locations. Thus, an
estimate of the convergence duration can be made
for any scenario where an estimate of the required
iterations has been made. Table 7 gives the esti-
mated duration for convergence in experiment 1 in
the Doorway setup (see Figure 5.2.1). The esti-
mated required iterations are taken from the con-
vergence curves in Figures 5.2.2, 5.2.2, and 5.2.2
for 3, 4 and 5 waypoints, respectively.

Table 7. Runtimes for convergence can be
estimated using the runtime per iteration and
number of iterations to converge. Number of
required iterations is based on experiment in

Figure 5.2.1.

Waypoints
Required
Iterations

Estimated
Runtime (s)

3 100 11.4
4 350 50.75
5 50000 8595.00

5.5 PSO Parameter Sensitivity

The results discussed so far used the PSO pa-
rameters shown in Table 1. The values for c1, c2,
wmin, and wmax are the defaults of the PSO library
used [16]. The performance when using default

parameters is of interest because typical users are
expected to do little to no change. Even in litera-
ture where PSO or similar algorithms are used, pa-
rameter tuning is commonly absent (as observed by
Tewold et. al. [27]). As these algorithms become
increasingly available through convenient software
libraries, the barrier using such algorithms is very
low. It is encouraging to observe reliable conver-
gence to feasible, approximately optimal solutions
for the complicated path planning problem without
any modification of PSO parameters.

Figure 12. Environment setup for PSO parameter
testing

However, it is known that PSO is dependent on
its parameters and so next they are modified in an
attempt to increase performance. The PSO param-
eters are the cognitive coefficient c1, social coeffi-
cient c2, and inertia weight w.

Adopting the tuning parameters used in [15],
the parameters are restricted to c1 ∈ [0,4] and c2 ∈
[0,4]. Samples are uniformly selected with an in-
terval of 0.2. Each pair of values is tested with 10
trials. The mean, min, and max fitness of each pair
are plotted as well as the number of infeasible solu-
tions.

Figure 13 shows the topography of the parame-
ter space. The z-axis is the mean fitness over 10 ex-
periments, with valleys having the lowest (i.e., best)
fitness and peaks having the worst. Some observa-
tions include:

– The topography is complex with excellent so-
lutions (valleys) situated among tall high-fitness
peaks. This suggests complex relations between
c1 and c2.

– There is an overall behavior that shows stronger
performance with higher values of c1 and lower

COLLISION-FREE AUTONOMOUS ROBOT NAVIGATION IN. . .

values of c2.

– High-quality solutions are even found when dis-
abling c2 entirely, but subtly better overall fitness
is obtained when c2 is 0.5.

– Intuition expects that a balance of cognitive and
social emphasis would produce better planning,
but for the particular fitness function and PSO
implementation, it appears that the social coeffi-
cient can easily lead to poor fitness values. This
is in contrast with results from [28] where the
opposite was found: lower c1 and higher c2 gave
significantly improved performance. This result
emphasizes the importance of exploring the ef-
fect of weights for every specific application.

cognitive coefficient c1
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

so
cial

co
effi

cient
c
2

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 13. Parameter sensitivity test of mean
fitness over social and cognitive coefficients

cognitive coefficient c
1

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0 so

cia
l c
oe
ffic
ien
t c

2

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0

fi
tn
es
s
va
lu
e
(m

ea
n)

0

20000

40000

60000

80000

100000

Figure 14. Parameter sensitivity test of mean
fitness over social and cognitive coefficients

cognitive coefficient c
1

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0 so

cia
l c
oe
ffic
ien
t c

2

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0

fi
tn
es
s
va
lu
e
(w

or
st
)

0

20000

40000

60000

80000

100000

Figure 15. Parameter sensitivity test of the worst
fitness over social and cognitive coefficients

cognitive coefficient c
1

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0 so

cia
l c
oe
ffic
ien
t c

2

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0

fi
tn
es
s
va
lu
e
(b
es
t)

0

20000

40000

60000

80000

100000

Figure 16. Parameter sensitivity test of best fitness
over social and cognitive coefficients

The fitness values are shown with colors indi-
cating the proportion of infeasible solutions for the
mean, minimum, and maximum fitness in Figures
14, 16, and 15, respectively. The colors graduate
from blue to yellow with blue indicating no infea-
sible solutions and yellow indicating the most. The
maximum number of infeasible paths was found to
be 40 (40% of the trials for the parameters pair). For
the worst combinations of c1 and c2, it is almost a
coin flip as to whether the solution will be feasi-
ble. However, in the regions where the value of c2
is lower, the infeasible paths are almost absent.

Even for poor parameter selections, PSO would
occasionally perform as well as if it were using the
best parameters. The parameters strongly affect re-
liability but have almost no impact on best-case fit-
ness. Given enough opportunities, a high-quality
feasible solution can be found.

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

280 Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

Because of the parameter space’s complex to-
pography, the tuned coefficients were selected
based not only on their fitness but by their neigh-
bor’s as well. High performing valleys in be-
tween large peaks are assumed to be less stable than
smooth plains. Using the results of the parameter
optimization is shown the selected parameters are
c1 := 3,c2 := 1.

6 Conclusions and Future Work

This research proposed a robot navigation sys-
tem using a TURTLEBOT robot to autonomously
map an unknown environment using a 3D physics-
based simulator. PSO demonstrated high perfor-
mance in searching for the optimal path (i.e., way-
points). The results show that the robot can generate
and follow effective paths in multiple environments
with various characteristics.

Future work is to explore adaptive assignment
of the number of waypoints. While the experiments
shown were able to make use of three or four way-
points, this will be insufficient in a more complex
environment which requires more turns to reach the
goal. A mechanism should exist to dynamically add
more waypoints if needed, but still use as few as
possible to reduce complexity. One approach would
be to add a new waypoint each time PSO fails to
find a feasible solution after a pre-defined number
of iterations. Another area to explore more sophisti-
cated search space exploration methods. This work
focus on path planning, but the exploration phase
based PSO is critical to the ARN system in an un-
known environment. Frontier-based, information-
theoretic, and other approaches should be evalu-
ated when exploring with both single and multiple
robots.

References
[1] A hybridization of an improved particle swarm op-

timization and gravitational search algorithm for
multi-robot path planning, 28.

[2] M Shahab Alam, M Usman Rafique, and M Umer
Khan. Mobile robot path planning in static environ-
ments using particle swarm optimization. Interna-
tional Journal of Computer Science and Electronics
Engineering (IJCSEE), 3(3):253–257, 2015.

[3] Dora-Luz Almanza-Ojeda, Yazmı́n Gomar-Vera,

and Mario Ibarra-Manzano. Occupancy Map Con-
struction for Indoor Robot Navigation. 10 2016.

[4] Ismail Altaharwa, Alaa Sheta, and Mohammed Al-
weshah. A mobile robot path planning using genetic
algorithm in static environment. Journal of Com-
puter Science, 4, 01 2008.

[5] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma,
S. S. Jadon, and A. Abraham. Inertia weight strate-
gies in particle swarm optimization. In 2011 Third
World Congress on Nature and Biologically Inspired
Computing, pages 633–640, Oct 2011.

[6] Ján Bac̆ı́k, Frantisek Durovsky, Milan Biros, Karol
Kyslan, Daniela Perdukova, and P Sanjeevikumar.
Pathfinder – development of automated guided ve-
hicle for hospital logistics. IEEE Access, 5:26892 –
26900, 10 2017.

[7] Sumana Biswas, Sreenatha G. Anavatti, and
Matthew A. Garratt. Obstacle avoidance for multi-
agent path planning based on vectorized particle
swarm optimization. In George Leu, Hemant Kumar
Singh, and Saber Elsayed, editors, Intelligent and
Evolutionary Systems, pages 61–74, Cham, 2017.
Springer International Publishing.

[8] E. A. S. Carballo, L. Morales, and F. Trujillo-
Romero. Path planning for a mobile robot using ge-
netic algorithm and artificial bee colony. In 2017 In-
ternational Conference on Mechatronics, Electron-
ics and Automotive Engineering (ICMEAE), pages
8–12, Nov 2017.

[9] Xin Chen and Yangmin Li. Smooth Path Planning
of a Mobile Robot Using Stochastic Particle Swarm
Optimization. In 2006 International Conference on
Mechatronics and Automation, pages 1722–1727,
Luoyang, June 2006. IEEE.

[10] R. Craig Coulter. Implementation of the pure
pursuit path tracking algorithm. Technical Report
CMU-RI-TR-92-01, Carnegie Mellon University,
Pittsburgh, PA, January 1992.

[11] Stan Franklin and Art Graesser. Is it an agent,
or just a program?: A taxonomy for autonomous
agents. In Proceedings of the Workshop on Intelli-
gent Agents III, Agent Theories, Architectures, and
Languages, ECAI ’96, pages 21–35, London, UK,
UK, 1997. Springer-Verlag.

[12] Avinash Gautam and Sudeept Mohan. A review of
research in multi-robot systems. 08 2012.

[13] C. Georgoulas, T. Linner, A. Kasatkin, and
T. Bock. An ami environment implementation: Em-
bedding turtlebot into a novel robotic service wall.
In ROBOTIK 2012; 7th German Conference on
Robotics, pages 1–6, May 2012.

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

281Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

Because of the parameter space’s complex to-
pography, the tuned coefficients were selected
based not only on their fitness but by their neigh-
bor’s as well. High performing valleys in be-
tween large peaks are assumed to be less stable than
smooth plains. Using the results of the parameter
optimization is shown the selected parameters are
c1 := 3,c2 := 1.

6 Conclusions and Future Work

This research proposed a robot navigation sys-
tem using a TURTLEBOT robot to autonomously
map an unknown environment using a 3D physics-
based simulator. PSO demonstrated high perfor-
mance in searching for the optimal path (i.e., way-
points). The results show that the robot can generate
and follow effective paths in multiple environments
with various characteristics.

Future work is to explore adaptive assignment
of the number of waypoints. While the experiments
shown were able to make use of three or four way-
points, this will be insufficient in a more complex
environment which requires more turns to reach the
goal. A mechanism should exist to dynamically add
more waypoints if needed, but still use as few as
possible to reduce complexity. One approach would
be to add a new waypoint each time PSO fails to
find a feasible solution after a pre-defined number
of iterations. Another area to explore more sophisti-
cated search space exploration methods. This work
focus on path planning, but the exploration phase
based PSO is critical to the ARN system in an un-
known environment. Frontier-based, information-
theoretic, and other approaches should be evalu-
ated when exploring with both single and multiple
robots.

References
[1] A hybridization of an improved particle swarm op-

timization and gravitational search algorithm for
multi-robot path planning, 28.

[2] M Shahab Alam, M Usman Rafique, and M Umer
Khan. Mobile robot path planning in static environ-
ments using particle swarm optimization. Interna-
tional Journal of Computer Science and Electronics
Engineering (IJCSEE), 3(3):253–257, 2015.

[3] Dora-Luz Almanza-Ojeda, Yazmı́n Gomar-Vera,

and Mario Ibarra-Manzano. Occupancy Map Con-
struction for Indoor Robot Navigation. 10 2016.

[4] Ismail Altaharwa, Alaa Sheta, and Mohammed Al-
weshah. A mobile robot path planning using genetic
algorithm in static environment. Journal of Com-
puter Science, 4, 01 2008.

[5] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma,
S. S. Jadon, and A. Abraham. Inertia weight strate-
gies in particle swarm optimization. In 2011 Third
World Congress on Nature and Biologically Inspired
Computing, pages 633–640, Oct 2011.

[6] Ján Bac̆ı́k, Frantisek Durovsky, Milan Biros, Karol
Kyslan, Daniela Perdukova, and P Sanjeevikumar.
Pathfinder – development of automated guided ve-
hicle for hospital logistics. IEEE Access, 5:26892 –
26900, 10 2017.

[7] Sumana Biswas, Sreenatha G. Anavatti, and
Matthew A. Garratt. Obstacle avoidance for multi-
agent path planning based on vectorized particle
swarm optimization. In George Leu, Hemant Kumar
Singh, and Saber Elsayed, editors, Intelligent and
Evolutionary Systems, pages 61–74, Cham, 2017.
Springer International Publishing.

[8] E. A. S. Carballo, L. Morales, and F. Trujillo-
Romero. Path planning for a mobile robot using ge-
netic algorithm and artificial bee colony. In 2017 In-
ternational Conference on Mechatronics, Electron-
ics and Automotive Engineering (ICMEAE), pages
8–12, Nov 2017.

[9] Xin Chen and Yangmin Li. Smooth Path Planning
of a Mobile Robot Using Stochastic Particle Swarm
Optimization. In 2006 International Conference on
Mechatronics and Automation, pages 1722–1727,
Luoyang, June 2006. IEEE.

[10] R. Craig Coulter. Implementation of the pure
pursuit path tracking algorithm. Technical Report
CMU-RI-TR-92-01, Carnegie Mellon University,
Pittsburgh, PA, January 1992.

[11] Stan Franklin and Art Graesser. Is it an agent,
or just a program?: A taxonomy for autonomous
agents. In Proceedings of the Workshop on Intelli-
gent Agents III, Agent Theories, Architectures, and
Languages, ECAI ’96, pages 21–35, London, UK,
UK, 1997. Springer-Verlag.

[12] Avinash Gautam and Sudeept Mohan. A review of
research in multi-robot systems. 08 2012.

[13] C. Georgoulas, T. Linner, A. Kasatkin, and
T. Bock. An ami environment implementation: Em-
bedding turtlebot into a novel robotic service wall.
In ROBOTIK 2012; 7th German Conference on
Robotics, pages 1–6, May 2012.

COLLISION-FREE AUTONOMOUS ROBOT NAVIGATION IN. . .

[14] S. Ghosh, P. K. Panigrahi, and D. R. Parhi. Anal-
ysis of fpa and ba meta-heuristic controllers for op-
timal path planning of mobile robot in cluttered en-
vironment. IET Science, Measurement Technology,
11(7):817–828, 2017.

[15] Suhanya Jayaprakasam, Sharul Kamal Abdul
Rahim, and Chee Yen Leow. Psogsa-explore: A new
hybrid metaheuristic approach for beampattern op-
timization in collaborative beamforming. Applied
Soft Computing, 30:229–237, 2015.

[16] Kyriakos Kentzoglanakis. Particle swarm opti-
mization in c. https://github.com/kkentzo/pso, 2017.

[17] N. Koenig and A. Howard. Design and use
paradigms for gazebo, an open-source multi-robot
simulator. In 2004 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS)
(IEEE Cat. No.04CH37566), volume 3, pages 2149–
2154 vol.3, Sept 2004.

[18] E. Masehian and D. Sedighizadeh. Multi-Objective
PSO- and NPSO-based Algorithms for Robot Path
Planning. Advances in Electrical and Computer En-
gineering, 10(4):69–76, 2010.

[19] Amin Zargar Nasrollahy and Hamid Haj Seyyed
Javadi. Using Particle Swarm Optimization for
Robot Path Planning in Dynamic Environments with
Moving Obstacles and Target. In 2009 Third UK-
Sim European Symposium on Computer Modeling
and Simulation, pages 60–65, Athens, Greece, 2009.
IEEE.

[20] Millie Pant, Radha Thangaraj, and Ajith Abraham.
Particle swarm optimization: performance tuning
and empirical analysis. Foundations of Computa-
tional Intelligence, 3:101–128, 2009.

[21] P. Raja and S. Pugazhenthi. Path Planning for Mo-
bile Robots in Dynamic Environments Using Par-
ticle Swarm Optimization. In 2009 International
Conference on Advances in Recent Technologies
in Communication and Computing, pages 401–405,
Kottayam, Kerala, India, 2009. IEEE.

[22] P Raja and S Pugazhenthi. Optimal path planning
of mobile robots: A review. International Journal of
the Physical Sciences, 7:1314–1320, 02 2012.

[23] L. Scharf, W. Harthill, and P. Moose. A comparison
of expected flight times for intercept and pure pur-
suit missiles. IEEE Transactions on Aerospace and
Electronic Systems, 4:672–673, 1969.

[24] K. H. Sedighi, K. Ashenayi, T. W. Manikas,
R. L. Wainwright, and Heng-Ming Tai. Autonomous
local path planning for a mobile robot using a
genetic algorithm. In Proceedings of the 2004
Congress on Evolutionary Computation (IEEE Cat.
No.04TH8753), volume 2, pages 1338–1345 Vol.2,
June 2004.

[25] Dmitri Sokolov. tinyrenderer, 2017.

[26] Monica Anderson LaPoint Maria Gini Nikolaos
Papanikolopoulos John Budenske Steven Damer,
Luke Ludwig. Dispersion and exploration algo-
rithms for robots in unknown environments. volume
6230, 2006.

[27] Girma S Tewolde, Darrin M Hanna, and Richard E
Haskell. Enhancing performance of pso with auto-
matic parameter tuning technique. In 2009 IEEE
Swarm Intelligence Symposium, pages 67–73.
IEEE, 2009.

[28] Gerhard Venter and Jaroslaw Sobieszczanski-
Sobieski. Particle swarm optimization. AIAA jour-
nal, 41(8):1583–1589, 2003.

Evan Krell received his M.Sc. from
the Department of Computing Scienc-
es, Texas A&M - Corpus Christi, TX,
USA, where he also did his undergrad-
uate studies. He is currently pursuing
a Ph.D. at the same. He is currently
working in the Pixel Island research
lab, focusing on mission planning for
unmanned surface vehicles and col-

lision avoidance for unmanned aircraft. Previously, he was
involved with bioinformatics for the Texas A&M - Corpus
Christi Genetics Core Lab. His research interests are artifi-
cial intelligence, unmanned systems, image processing and
bioinformatics.

Alaa Sheta is Assistant Professor at
the Department of Computing Sci-
ences, Texas A&M University-Cor-
pus Christi, TX, USA. He received
his B.E., M.Sc. degrees in Electron-
ics and Communication Engineer-
ing from the Faculty of Engineering,
Cairo University in 1988 and 1994,
respectively. He received his Ph.D.

from the Computer Science Department, School of Informa-
tion Technology and Engineering, George Mason University,
Fairfax, VA, the USA in 1997. He published three books in
the area of Landmine Detection, and Image Reconstruction
of a Manufacturing Process. He is also the co-editor of the

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

282

book entitled,”Business Intelligence and Performance Man-
agement-Theory, Systems, and Industrial Applications” by
Springer Verlag, United Kingdom, published in March 2013.
Dr. Sheta published more than 130 journal and conference pa-
pers. He mainly focus on machine learning and its application
in the domain of industrial process modeling, software relia-
bility modeling, software cost estimation, automation, medi-
cal/non-medical imagining, and biomedical applications.

Arun Prassanth Ramaswamy Balas-
ubramanian received his Master’s de-
gree in Computer Science from Texas
A&M University-Corpus Christi, TX
in 2018. He is currently working for
Nokia Bell Labs in Sunnyvale, CA.
His research interests include robot-
ics and artificial intelligence, ambient
intelligence, machine learning, multi-

agent robotic systems and computer vision. He has 4+ years
of industry experience as Software Engineer in computer net-
works and is originally form India.

Scott A. King received his Ph.D. from
The Ohio State University in 2001 in
Computer and Information Science. He
joined Otago University in Dunedin,
New Zealand immediately after re-
ceiving his Ph.D. and was there for two
and half years. He then joined Texas
A&M University-Corpus Christi in
2004 and has been there since. He is

currently the Chair of the Department of Computing Scienc-
es. He expertise in computer graphics, visualization, HCI,
autonomous vehicles, smart environments. He is a member
of IEEE and ACM.

Evan Krell, Alaa Sheta, Arun Prassanth Ramaswamy Balasubramanian, Scott A. King

Because of the parameter space’s complex to-
pography, the tuned coefficients were selected
based not only on their fitness but by their neigh-
bor’s as well. High performing valleys in be-
tween large peaks are assumed to be less stable than
smooth plains. Using the results of the parameter
optimization is shown the selected parameters are
c1 := 3,c2 := 1.

6 Conclusions and Future Work

This research proposed a robot navigation sys-
tem using a TURTLEBOT robot to autonomously
map an unknown environment using a 3D physics-
based simulator. PSO demonstrated high perfor-
mance in searching for the optimal path (i.e., way-
points). The results show that the robot can generate
and follow effective paths in multiple environments
with various characteristics.

Future work is to explore adaptive assignment
of the number of waypoints. While the experiments
shown were able to make use of three or four way-
points, this will be insufficient in a more complex
environment which requires more turns to reach the
goal. A mechanism should exist to dynamically add
more waypoints if needed, but still use as few as
possible to reduce complexity. One approach would
be to add a new waypoint each time PSO fails to
find a feasible solution after a pre-defined number
of iterations. Another area to explore more sophisti-
cated search space exploration methods. This work
focus on path planning, but the exploration phase
based PSO is critical to the ARN system in an un-
known environment. Frontier-based, information-
theoretic, and other approaches should be evalu-
ated when exploring with both single and multiple
robots.

References
[1] A hybridization of an improved particle swarm op-

timization and gravitational search algorithm for
multi-robot path planning, 28.

[2] M Shahab Alam, M Usman Rafique, and M Umer
Khan. Mobile robot path planning in static environ-
ments using particle swarm optimization. Interna-
tional Journal of Computer Science and Electronics
Engineering (IJCSEE), 3(3):253–257, 2015.

[3] Dora-Luz Almanza-Ojeda, Yazmı́n Gomar-Vera,

and Mario Ibarra-Manzano. Occupancy Map Con-
struction for Indoor Robot Navigation. 10 2016.

[4] Ismail Altaharwa, Alaa Sheta, and Mohammed Al-
weshah. A mobile robot path planning using genetic
algorithm in static environment. Journal of Com-
puter Science, 4, 01 2008.

[5] J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma,
S. S. Jadon, and A. Abraham. Inertia weight strate-
gies in particle swarm optimization. In 2011 Third
World Congress on Nature and Biologically Inspired
Computing, pages 633–640, Oct 2011.

[6] Ján Bac̆ı́k, Frantisek Durovsky, Milan Biros, Karol
Kyslan, Daniela Perdukova, and P Sanjeevikumar.
Pathfinder – development of automated guided ve-
hicle for hospital logistics. IEEE Access, 5:26892 –
26900, 10 2017.

[7] Sumana Biswas, Sreenatha G. Anavatti, and
Matthew A. Garratt. Obstacle avoidance for multi-
agent path planning based on vectorized particle
swarm optimization. In George Leu, Hemant Kumar
Singh, and Saber Elsayed, editors, Intelligent and
Evolutionary Systems, pages 61–74, Cham, 2017.
Springer International Publishing.

[8] E. A. S. Carballo, L. Morales, and F. Trujillo-
Romero. Path planning for a mobile robot using ge-
netic algorithm and artificial bee colony. In 2017 In-
ternational Conference on Mechatronics, Electron-
ics and Automotive Engineering (ICMEAE), pages
8–12, Nov 2017.

[9] Xin Chen and Yangmin Li. Smooth Path Planning
of a Mobile Robot Using Stochastic Particle Swarm
Optimization. In 2006 International Conference on
Mechatronics and Automation, pages 1722–1727,
Luoyang, June 2006. IEEE.

[10] R. Craig Coulter. Implementation of the pure
pursuit path tracking algorithm. Technical Report
CMU-RI-TR-92-01, Carnegie Mellon University,
Pittsburgh, PA, January 1992.

[11] Stan Franklin and Art Graesser. Is it an agent,
or just a program?: A taxonomy for autonomous
agents. In Proceedings of the Workshop on Intelli-
gent Agents III, Agent Theories, Architectures, and
Languages, ECAI ’96, pages 21–35, London, UK,
UK, 1997. Springer-Verlag.

[12] Avinash Gautam and Sudeept Mohan. A review of
research in multi-robot systems. 08 2012.

[13] C. Georgoulas, T. Linner, A. Kasatkin, and
T. Bock. An ami environment implementation: Em-
bedding turtlebot into a novel robotic service wall.
In ROBOTIK 2012; 7th German Conference on
Robotics, pages 1–6, May 2012.

Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 22.01.20 08:41 UTC

