PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Subsurface imaging of fluvial deposits of the Wisła River valley in Kraków (southern Poland) by 2D ERT survey

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We describe the application of 2D ERT (electrical resistivity tomography) surveys to investigate the spatial complexity of fluvial deposits of the Wisła River valley in the eastern part of Kraków (southern Poland). All ERT survey lines were completed within the industrially influenced floodplain of the Wisła River at two research sites. Due to the transformation of the natural state of the environment through many years of industrial activity of the ArcelorMittal Kraków plant, some of the geomorphological elements analysed have been irretrievably transformed and hidden by anthropogenic accumulations such as waste landfills and engineering structures. Hence, many years of soil contamination have changed the primary resistivity characteristics of the subsurface. For this purpose, the measurement array applied combines standard arrays, i.e., Wenner-Schlumberger and Dipole-Dipole, which gave improved results (higher resolution) in comparison to the standard single array. The data interpretation method was supported by the calculation and visualization of the vertical and horizontal gradients of the interpreted resistivity within the resistivity sections. This approach allowed accurate determination of resistivity boundaries on the ERT resistivity sections and thus helped lithological interpretation of the fluvial deposits in the research area. The resistivity of water in a channel located within one of the analysed areas has impacted some of the research results. Furthermore, 2D ERT forward modeling was implemented to generate synthetic datasets. The synthetic data allowed investigation of the influence of groundwater contamination on the resistivity distribution within superficial layers, and also tested the ability of the 2D ERT model to recognize the detailed spatial distribution of palaeomeander (meander scar) infills. All methods have provided new information on the industrially influenced floodplain of the Wisła River in Kraków.
Rocznik
Strony
art. no. 23
Opis fizyczny
Bibliogr. 78 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environment Protection, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Gołaśka 33, 30-619 Kraków, Poland
Bibliografia
  • 1. Akinbiyi, O.A., Oladunjoye, M.A., Sanuade, O.A., Oyedeji, O., 2019. Geophysical characterization and hydraulic properties of unconsolidated floodplain aquifer system in Wamako area, Sokoto State, north-western Nigeria. Applied Water Science, 9: 177.
  • 2. Bábek, O., Sedláček, J., Novák, A., Létal, A., 2018. Electrical resistivity imaging of anastomosing river subsurface stratigraphy and possible controls of fluvial style change in a graben-like basin, Czech Republic. Geomorphology, 317: 139-156.
  • 3. Baines, D., Smith, D.G., Froese, D.G., Bauman, P., Nimeck, G., 2002. Electrical resistivity ground imaging (ERGI): a new tool for mapping the lithology and geometry of channel-belts and valley-fills. Sedimentology, 49: 441-449.
  • 4. Bania, G., 2018. ERT method in the study of chemical pollution of the hydrogeological environment - numerical analysis of 2D and 3D models. E3S Web of Conferences, 66: 01007.
  • 5. Bania, G., Ćwiklik, M., 2013. 2D Electrical Resistivity Tomography interpretation ambiguity - example of field studies supported with analogue and numerical modelling. Geology, Geophysics & Environment, 39: 331-339.
  • 6. Bania, G., Ćwiklik, M., 2014. Combined 2D Resistivity Imaging and Penetrometer-Based Resistivity Profiling - example of field studies. Conference Proceedings, 76th EAGE Conference and Exhibition 2014, Jun 2014, Volume 2014: 1-3.
  • 7. Bania, G., Ćwiklik, M., 2015. Study of a Subsurface Zone Condition in the Vicinity of an Industrial Waste Heap with ERT Method. Conference Proceedings, 77th EAGE Conference and Exhibition 2015, Jun 2015, Volume 2015: 1-3.
  • 8. Berge, M.A., 2014. Electrical resistivity tomography investigations on a paleoseismological trenching study. Journal of Applied Geophysics, 109: 162-174.
  • 9. Bermejo, L., Ortega, A.I., Guérin, R., Benito-Calvo, A., Pérez-González, A., Parés, J.M., Aracil, E., Bermúdez de Castro, J.M., Carbonell, E., 2017. 2D and 3D ERT imaging for identifying karst morphologies in the archaeological sites of Gran Dolina and Galería Complex (Sierra de Atapuerca, Burgos, Spain). Quaternary International, 433: 393-401.
  • 10. Bogacz, A., Poręba, E., Urbańska, A., Woliński, W., 2003. Mapa geośrodowiskowa Polski w skali 1:50 000, ark. Niepołomice (974) (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 11. Chambers, J.E., Wilkinson, P.B., Wardrop, D., Hameed, A., Hill, I., Jeffrey, C., Loke, M.H., Meldrum, P.I., Kuras, O., Cave, M., Gunn, D.A., 2012. Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography. Geomorphology, 177-178: 17-25.
  • 12. Conyers, L.B., Ernenwein, E.G., Grealy, M., Lowe, K.M., 2008. Electromagnetic conductivity mapping for site prediction in meandering river floodplains. Archaeological Prospection, 15: 81-91.
  • 13. Danielsen, B.E., Dahlin, T., 2010. Numerical modelling of resolution and sensitivity of ERT in horizontal boreholes. Journal of Applied Geophysics, 70: 245-254.
  • 14. Dara, R., Kettridge, N., O. Rivett, M., Krause, S., Gomez-Ortiz, D., 2019. Identification of floodplain and riverbed sediment heterogeneity in a meandering UK lowland stream by ground penetrating radar. Journal of Applied Geophysics, 171: 103863.
  • 15. De Smedt, P., Van Meirvenne, M., Meerschman, E., Saey, T., Bats, M., Court-Picon, M., De Reu, J., Zwertvaegher, A., Antrop, M., Bourgeois, J., De Maeyer, P., A. Finke, P., Verniers, J., Crombé, P., 2011. Reconstructing palaeochannel morphology with a mobile multicoil electromagnetic induction sensor. Geomorphology, 130: 136-141.
  • 16. Dobrzańska, H., Kalicki, T., 2015. Morphology and land use of floodplains in the western part of Sandomierz Basin (southern Poland, Central Europe) in the Roman period. Quaternary International, 370: 100-112.
  • 17. Dortman, N.B., 1992. Petrophysics: Reference. In three books. Book one: Rocks and minerals. Nedra, Moscow.
  • 18. Duda, R., Mżyk, S., Farbisz, J., Bania, G., 2020. Investigating the Pollution Range in Groundwater in the Vicinity of a Tailings Disposal Site with Vertical Electrical Soundings. Polish Journal of Environmental Studies, 29: 101-110.
  • 19. Elwaseif, M., Slater, L., 2010. Quantifying tomb geometries in resistivity images using watershed algorithms. Journal of Archaeological Science, 37: 1424-1436.
  • 20. Erdođan, E., Demirci, I., Candansayar, M.E., 2008. Incorporating topography into 2D resistivity modeling using finite-element and finite-difference approaches. Geophysics, 73: F135-F142.
  • 21. Fox, R.C., Hohmann, G.W., Killpack, T.J., Rijo, L., 1980. Topographic effects in resistivity and induced polarization surveys. Geophysics, 45: 75-93.
  • 22. Gębica, P., 2004. The course of fluvial accumulation during the upper Vistulian in Sandomierz basin (in Polish with English summary). Prace Geograficzne, 193.
  • 23. Giocoli, A., Magrě, C., Vannoli, P., Piscitelli, S., Rizzo, E., Siniscalchi, A., Burrato, P., Basso, C., Di Nocera, S., 2008. Electrical resistivity tomography investigations in the ufita Valley (southern Italy). Annals of Geophysics, 51: 213-223.
  • 24. Gonzales Amaya, A., Dahlin, T., Barmen, G., Rosberg, J-E., 2016. Electrical Resistivity Tomography and induced polarization for mapping the subsurface of alluvial fans: a case study in Punata (Bolivia). Geosciences, 6: 51.
  • 25. Hošek, M., Matys Grygar, T., Elznicová, J., Faměra, M., Popelka, J., Matkovič, J., Kiss, T., 2018. Geochemical mapping in polluted floodplains using in situ X-ray fluorescence analysis, geophysical imaging, and statistics: Surprising complexity of floodplain pollution hotspot. Catena, 171: 632-644.
  • 26. The HYDRO Bank(Polish Geological Institute - National Research Institute). https://www.pgi.gov.pl/psh/dane-hydrogeologiczne-psh/947-bazy-danych-hydrogeologiczne/9057-bankhydro.html
  • 27. Kalicki, T., 1991a. Holocene generations of the Vistula paleomeanders near Cracow (in Polish with English summary). Kwartalnik AGH, Geologia, 17: 25-66.
  • 28. Kalicki, T., 1991b. The evolution of the Vistula river valley between Kraków and Niepołomice in late Vistulian and Holocene times. Geographical Studies, Special Issue, 6: 11-37.
  • 29. Kalicki, T., 2000. Grain size of the overbank deposits as carriers of paleogeographical information. Quaternary International, 72: 107-114.
  • 30. Kalicki, T., 2006. Reflection of climatic changes and human activity and their role in the Holocene evolution of Central European valleys (in Polish with English summary). Prace Geograficzne, 204.
  • 31. Kalicki, T., Krąpiec, M., 1991. Black oaks and Subatlantic alluvia of the Vistula in Branice-Stryjów near Cracow. Geographical Studies, Special Issue, 6: 39-61.
  • 32. Kalicki, T., Krąpiec, M., 1995. Problems of dating al luvium using buried subfossil tree trunks: lessons from the ‘black oaks' of the Vistula Valley, Central Europe. The Holocene, 5: 243-250.
  • 33. Kalicki, T., Mościcki, W.J., 1997. Geological and geoelectrical study of alluvia at Vistula paleomeander in Zabierzów Bocheński (in Polish with English summary). Przegląd Geograficzny, 69: 158-166.
  • 34. Kleczkowski, A.S., 1964. Budowa geologiczna i wody gruntowe wysokiego tarasu Wisły na wschód od Krakowa (in Polish). Rocznik Polskiego Towarzystwa Geologicznego, 34: 191-224.
  • 35. Kostic, B., Aigner, T., 2007. Sedimentary architecture and 3D ground-penetrating radar analysis of gravelly meandering river deposits (Neckar Valley, SW Germany). Sedimentology, 54: 789-808.
  • 36. Krąpiec, M., 1998. Oak dendrochronology of the Neoholocen in Poland. Folia Quaternaria, 69: 5-133.
  • 37. Loke, M.H., 2000. Topographic modelling in resistivity imaging inversion. 62nd EAGE Conference & Technical Exhibition Extended Abstracts, D-2.
  • 38. Loke, M.H., 2012. Tutorial: 2-D and 3-D Electrical Imaging Surveys. Geotomo Software, Malaysia.
  • 39. Loke, M.H., Ackworth, I., Dahlin, T., 2003. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics, 34: 182-187.
  • 40. Loke, M.H., Barker, R.D., 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44: 131-152.
  • 41. Lu, D.B., Zhou, Q.Y., Junejo, S.A., Xiao, A.L., 2015. A systematic study of topography effect of ERT based on 3-D modeling and inversion. Pure and Applied Geophysics, 172: 1531-1546.
  • 42. Łajczak, A., 2021. Changes of the Vistula River channel pattern and overbank accumulation rate in the Carpathian Foreland (South Poland) under human impact. Studia Geomorphologica Carpatho-Balcanica, 55: 153-184.
  • 43. Łajczak, A., Zarychta, R., 2020. Reconstruction of the morphology and hydrography of the centre of Kraków before the mid-13th century. Geographia Polonica, 93: 25-50.
  • 44. Mamakowa, K., Środoń, A., 1977. On the Pleniglacial flora from Nowa Huta and Quaternary deposits of the Vistula Valley near Cracow (in Polish with English summary). Rocznik Polskiego Towarzystwa Geologicznego, 47: 485-511.
  • 45. Matys Grygar, T., Elznicová, J., Tůmová, Š., Faměra, M., Balogh, M., Kiss, T., 2016. Floodplain architecture of an actively meandering river (the Ploučnice River, the Czech Republic) as revealed by the distribution of pollution and electrical resistivity tomography. Geomorphology, 254: 41-56.
  • 46. Mikoś, T., Stewarski, E., 2003. Mining exploitations of the steelwork waste tips (in Polish with English summary). Warsztaty z cyklu „Zagrożenia naturalne w górnictwie”, Materiały sympozjum: 435-451.
  • 47. Mościcki, W.J., Bania, G., Ćwiklik, M., Borecka, A., 2014. DC resistivity studies of shallow geology in the vicinity of Vistula River flood bank in Czernichów village (near Krakow in Poland). Studia Geotechnica et Mechanica, 36: 63-70.
  • 48. Mościcki, W.J., Bania, G., Ćwiklik, M., Florek-Odrazil, M., 2016. Budowa utworów przypowierzchniowych na terenie zespołu dworsko-parkowego w Branicach koło Krakowa - wyniki badań elektrooporowych (in Polish). In: Nawarstwienia historyczne miast Europy Środkowej (ed. M. Wardas): 407-423. Wydawnictwa AGH, Kraków.
  • 49. Operacz, A., 2009. Rola gleby i strefy aeracji w procesach samooczyszczania się środowiska wód podziemnych zdegradowanych przez emisje przemysłowe w rejonie Huty Arcelor Mittal (in Polish). Ph.D. thesis, AGH University of Science and Technology, Kraków.
  • 50. Oszczypko, N., 2006. Late Jurassic-Miocene evolution of the Outer Carpathian fold-and thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50 (1): 169-194.
  • 51. Oszczypko, N., Oszczypko-Clowes, M., 2012. Stages of development in the Polish Carpathian Foredeep basin. Central European Journal of Geosciences, 4: 138-162.
  • 52. Penz, S., Chauris, H., Donno, D., Mehl, C., 2013. Resistivity modelling with topography. Geophysical Journal International, 194: 1486-1497.
  • 53. Qarqori, K., Rouai, M., Moreau, F., Saracco, G., Dauteuil, O., Hermitte, D., Boualoul, M., Le Carlier de Veslud, C., 2012. Geoelectrical tomography investigating and modeling of fractures network around Bittit Spring (Middle Atlas, Morocco). International Journal of Geophysics, 2012: 1-13.
  • 54. Rejiba, F., Schamper, C., Chevalier, A., Deleplancque, B., Hovhannissian, G., Thiesson, J., Weill, P., 2018. Multiconfiguration electromagnetic induction survey for paleochannel internal structure imaging: a case study in the alluvial plain of the River Seine, France. Hydrology and Earth System Sciences, 22: 159-170.
  • 55. Rey, J., Martínez, J., Hidalgo, M.C., 2013. Investigating fluvial features with electrical resistivity imaging and ground-penetrating radar: The Guadalquivir River terrace (Jaen, Southern Spain). Sedimentary Geology, 295: 27-37.
  • 56. Rutkowski, J., 1989. Szczegółowa mapa geologiczna Polski w skali 1:50 000, ark. Kraków (973) (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 57. Rutkowski, J., 1993. Objaśnienia do Szczegółowej mapy geologicznej Polski w skali 1:50 000, ark. Kraków (973) (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 58. Rutkowski, J., Sokołowski, T., 1983. Preliminary petrographic study of Quaternary fluvial gravels of the Cracow region (southern Poland) (in Polish with English summary). Studia Geomorphologica Carpatho-Balcanica, 16: 99-108.
  • 59. Rutkowski, J., Starkel, L., 1989. Influence of the human economy on geological processes in the Cracow region, south Poland (in Polish with English summary). Przegląd Geologiczny, 37: 312-319.
  • 60. Rybicki, S., Krokoszyński, P., Herzig, J., 2009. Engineering-geological characteristic of the Krakow area subsoil, including historical deposits (in Polish with English summary). Kwartalnik AGH, Geologia, 35: 57-65.
  • 61. Schrott, A., Sass, O., 2008. Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphology, 93: 55-73.
  • 62. Silvester, P.P., Ferrari, R.L., 1996. Finite elements for electrical engineers (3rd ed.). Cambridge University Press.
  • 63. Słowik, M., 2011. Reconstructing migration phases of meandering channels by means of ground-penetrating radar (GPR): the case of the Obra River, Poland. Journal of Soils and Sediments, 11: 1262.
  • 64. Sokołowski, T., 2009. Topographic background of the settlement in Kraków (in Polish with English summary). Kwartalnik AGH, Geologia, 35: 67-76.
  • 65. Starkel, L., 2001. Evolution of the Vistula River Valley Since the Last Glaciation till Present (in Polish with English summary). Instytut Geografii i Przestrzennego Zagospodarowania PAN, Warszawa.
  • 66. Starkel, L., Michczyńska, D.J., Gębica, P., 2017. Reflection of climatic changes during interpleniglacial in the geoecosystems of South-Eastern Poland. Geochronometria, 44: 202-215.
  • 67. Stummer, P., Maurer, H., Green, A.G., 2004. Experimental design. Electrical resistivity data sets that provide optimum subsurface information. Geophysics, 69: 120-139.
  • 68. Telford, W.M., Geldart, L.P., Sheriff, R.E., 1990. Applied Geophysics. Cambridge University Press.
  • 69. Torrese, P., Rainone, M.L., Colantonio, F., Signanini, P., 2013. Identification and investigation of shallow paleochannels in the chamelecon valley (Honduras): 1D vs 2D electrical resistivity surveys. Symposium on the Application of Geophysics to Engineering and Environmental Problems 2013: 321-331.
  • 70. Tsourlos, P.I., Szymanski, J.E., Tsokas, G.N., 1999. The effect of terrain topographyon commonly used resistivity arrays. Geophysics, 64: 1357-1363.
  • 71. Vandenberghe, J., van Overmeeren, R.A., 1999. Ground penetrating radar images of selected fluvial deposits in the Netherlands. Sedimentary Geology, 128: 245-270.
  • 72. Woźniak, T., Bania, G., 2019a. Analysis of the tectonic and sedimentary features of the southern margin of the Krzeszowice Graben in Southern Poland based on an integrated geoelectrical and geological studies. Journal of Applied Geophysics, 165: 60-76.
  • 73. Woźniak, T., Bania, G., 2019b. Integrated geoelectrical and geological data sets for shallow structure characterization of the southern margin of the Krzeszowice Graben (Southern Poland). Data in Brief, 25: 104157.
  • 74. Woźniak, T., Bania, G., Mościcki, W.J., Ćwiklik, M., 2018. Electrical resistivity tomography (ERT) and sedimentological analysis applied to investigation of Upper Jurassic limestones from the Krzeszowice Graben (Kraków Upland, southern Poland). Geological Quarterly, 62(2): 287-302.
  • 75. Wójcik, A., 2015a. Map of landslides and hazardous areas for mass movements at a scale of 1:10,000 for the Kraków city, Sheet M-34-65-C-c-2. Polish Geological Institute - National Research Institute.
  • 76. Wójcik, A., 2015b. Map of landslides and hazardous areas for mass movements at a scale of 1:10,000 for the Kraków city, Sheet M-34-65-C-d-1. Polish Geological Institute - National Research Institute.
  • 77. Wójcik, A., Lewandowski, J., 2010. Szczegółowa mapa geologiczna Polski w skali 1:50 000, ark. Niepołomice (974) (in Polish). Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy, Warszawa.
  • 78. WIOŚ, 2012. Raport o stanie środowiska w wojewdztwie małopolskim za rok 2011 (in Polish). Wojewódzki Inspektorat Ochrony Środowiska, Kraków.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2e389ac-1b62-40ba-8a96-0549efe77843
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.