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Abstract 

This paper presents dynamic analysis of a bar with one end fixed and other free, loaded with force at its free 
end. The viscoelastic material of the bar is described by fractional models (Scot-Blair, Voigt, Maxwell and 

Zener models). Rayleigh-Ritz and Laplace transform methods were applied to obtain closed-form solution of 

the considered problem. 
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1. Introduction 

Fractional calculus has been successfully applied to modelling of viscoelastic materials 

[1]. Many authors considered such material models in dynamic analysis of beams, for 

example [2], [3], [4]. In this paper we consider vibration of a bar with one end fixed and 

other free, loaded with force on its free end. The most popular fractional models of 

viscoelastic material (Scott-Blair, Voigt, Maxwell and Zener models) were considered. 

General theory of the nonhomogeneous fractional differential equations with constant 

coefficients [5] and Laplace transform were used to solve obtained equations in time 

domain. 

The paper is organized as follows: first some definitions and notations from fractional 

calculus are introduced and constitutive relations between stress and strain for considered 

fractional models of viscoelastic material are given. In section 3 we state the problem. In 

section 4 we solve it and in section 5 we give some numerical examples of the solutions. 

2. Preliminaries and notations 

There exist many definitions of fractional derivative. The most popular in application to 

viscoelasticity are Riemann-Liouville and Caputo fractional derivatives [1]. They are 

defined as follows: 
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𝐷𝑅𝐿
𝛼 𝐹(𝑡) =

𝑑𝑛

𝑑
(

1

Γ(𝑛 − 𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1
𝑡

0

𝐹(𝜏)𝑑𝜏) 

𝐷𝐶
𝛼𝐹(𝑡) =

1

Γ(𝑛 − 𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1
𝑡

0

𝐹(𝑛)(𝜏)𝑑𝜏 

where n – an integer is such that n-1  α  n. These definitions are not equivalent. It is 

well known paradox that Rieman-Liouville derivative of constant function is not equal to 

zero while Caputo derivative is. There are also some problems with initial conditions for 

fractional differential equations with Riemann-Liouville derivatives [6], [7].This is the 

reason why some authors consider only Caputo derivatives, however when F(k)(0+)=0,  

k = 0, 1,..., n-1, then both derivatives are equivalent [1]: 

𝐷𝑅𝐿
𝛼 𝐹(𝑡) = 𝐷𝐶

𝛼𝐹(𝑡) 

In this paper we consider problem with zero initial conditions, so, in this case, Rieman-

Liouville and Caputo fractional derivatives are equivalent and further we will denote 

fractional derivative of order α as Dα F(t).  

Laplace transform of Dα F(t) can be evaluated from formula [5]: 

ℒ(𝐷𝛼𝐹(𝑡)) = 𝑠𝛼ℒ(𝐹(𝑡))    (1) 

Below we give constitutive relations between stress σ(t) and strain ε(t) for considered 

fractional models of viscoelastic material (for each model 0 < α ≤ 1): 

Scott-Blair model 

       𝜎(𝑡) = 𝜂𝐷𝛼𝜀(𝑡)    (2) 

fractional Voigt model 

                𝜎(𝑡) = 𝐸𝜀(𝑡) + 𝜂𝐷𝛼𝜀(𝑡)   (3) 

fractional Maxwell model 

                           𝜎(𝑡) + 𝑎𝐷𝛼𝜎(𝑡) = 𝜂𝐷𝛼𝜀(𝑡)   (4) 

fractional Zener model 

      𝜎(𝑡) + 𝑎𝐷𝛼𝜎(𝑡) = 𝐸𝜀(𝑡) + 𝜂𝐷𝛼𝜀(𝑡)     (5) 

where a, E, η  some constants. 

3. Problem formulation 

Let us consider a bar with length L and cross section A with one end fixed and other free, 

loaded with axial force f(t) at its free end, where f(t) is a given time function. Dynamic 

equation for axial displacement u(x,t) of the bar with boundary and initial conditions are 

written below (dots denote time derivatives, primes spatial): 
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     𝜚𝑢̈(𝑥, 𝑡) = 𝜎′(𝑥, 𝑡) +
𝑓(𝑡)𝛿(𝑥−𝐿)

𝐴
    (6) 

          𝑢(0, 𝑡) = 0, 𝜎(𝐿, 𝑡) = 0    (7) 

          𝑢(𝑥, 0) = 0, 𝑢̇(𝑥, 0) = 0     (8) 

where δ - Dirac delta and f(t) is defined below: 

        𝑓(𝑡) = {

𝑡

𝑡1
𝑓0  𝑓𝑜𝑟 0 ≤ 𝑡 < 𝑡1

𝑓0    𝑓𝑜𝑟 𝑡1 ≤ 𝑡 < 𝑡2
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

    (9) 

where t1, t2, f0 - some constants. It means, we apply the force to the bar for some time and 

keep it constant to the moment t2, when we remove the force. Using definition of Caputo 

or Riemann-Liuville fractional derivatives (both give the same result, because f(0) = 0), 

recalled in previous section, one could show that Dαf(t) for 0 < α < 1 is given by the 

formula (note that Dαf(t) is indeterminate at t2): 

                       𝐷𝛼𝑓(𝑡) =

{
 
 

 
 

𝑓0 𝑡
1−𝛼

𝑡1 𝛤(2−𝛼)
 ,     0 ≤ 𝑡 < 𝑡1
     

𝑓0

𝑡1𝛤(2−𝛼)
(𝑡1−𝛼 − (𝑡 − 𝑡1)

1−𝛼)  ,      𝑡1 ≤ 𝑡 < 𝑡2 

𝑓0

𝑡1𝛤(2−𝛼)
(𝑡1−𝛼 − (𝑡 − 𝑡1)

1−𝛼) −
𝑓0(𝑡−𝑡2)

−𝛼

𝛤(1−𝛼)
,   𝑡 > 𝑡2

              (10) 

Using relation ε(x,t) = u'(x,t) equation (6) can be transformed according to the 

fractional models of the viscoelastic material (2)-(5) (below fractional derivatives refers 

to time): 

Scott-Blair model: 

       𝑢̈(𝑥, 𝑡) =
𝜂

𝜚
(𝐷𝛼𝑢(𝑥, 𝑡))

′′
+

𝑓(𝑡)𝛿(𝑥−𝐿)

𝐴
   (11) 

fractional Voigt model: 

             𝑢̈(𝑥, 𝑡) =
𝐸

𝜚
𝑢′′(𝑥, 𝑡) +

𝜂

𝜚
(𝐷𝛼𝑢(𝑥, 𝑡))

′′
+

𝑓(𝑡)𝛿(𝑥−𝐿)

𝐴
  (12) 

fractional Maxwell model: 

Let us apply operator 1+aDα on both size of the equation (6). One get the following 

equation after using constitutive relation (4): 

     𝐷2+𝛼𝑢(𝑥, 𝑡) +
1

𝑎
𝑢̈(𝑥, 𝑡) =

𝜂

𝑎𝜚
(𝐷𝛼𝑢(𝑥, 𝑡))

′′
+

𝛿(𝑥−𝐿)

𝑎𝜚𝐴
(𝑓(𝑡) + 𝑎𝐷𝛼𝑓(𝑡)) (13) 
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fractional Zener model: 

Similarly as for Maxwell model one can get the equation of motion for Zener model:  

𝐷2+𝛼𝑢(𝑥, 𝑡) +
1

𝑎
𝑢̈(𝑥, 𝑡) = 

=
𝐸

𝑎𝜚
𝑢′′(𝑥, 𝑡) +

𝜂

𝑎𝜚
(𝐷𝛼𝑢(𝑥, 𝑡))

′′
+

𝛿(𝑥−𝐿)

𝑎𝜚𝐴
(𝑓(𝑡) + 𝑎𝐷𝛼𝑓(𝑡))  (14) 

In all these equations (11)-(14) 0 < α  1 and for α = 1 we have classical viscoelastic 

models (Newton model instead of Scott-Blair model etc.) 

4. Solution 

We use Rayleigh-Ritz method to solve equations (11)-(14) with boundary and initial 

conditions (7), (8). We search solution in the form: 

            𝑢(𝑥, 𝑡) = ∑ 𝑤𝑛(𝑡)𝜙𝑛(𝑥)
𝑛
𝑖=0      (15) 

where wn(t) - unknown time functions, ϕn(x) - n-th mode of free vibration of the bar. They 

are known functions: 

       𝜙𝑛(𝑥) = √
2
𝐿⁄ ∙ sin(𝜆𝑛𝑥) ,      𝜆𝑛 =

(2𝑛 − 1)𝜋

2𝐿
 , 𝑛 = 1, 2, … 

They satisfy the orthogonality conditions: 

      ∫ 𝜙𝑖(𝑥)
𝐿

0
𝜙𝑗(𝑥)𝑑𝑥 = 𝛿𝑖𝑗  ,   ∫ 𝜙𝑖

′′(𝑥)
𝐿

0
𝜙𝑗(𝑥)𝑑𝑥 = −𝜆𝑖

2𝛿𝑖𝑗 ,   𝑖, 𝑗 = 1, 2, …  (16) 

where δij - Kronecker delta. Functions ϕn(x) fulfil boundary conditions (7) and 

consequently function (15) also. 

Scott-Blair model: 

When we substitute (15) into (11) we obtain: 

∑(𝑤̈𝑛(𝑡)𝜙𝑛(𝑥) −
𝜂

𝜚
𝜙𝑛
′′(𝑥)𝐷𝛼𝑤𝑛(𝑡)) =

𝑓(𝑡)𝛿(𝑥 − 𝐿)

𝜚𝐴

∞

𝑛=1

 

Let us multiply last equation by ϕi(x) for some i =1, 2, ... and integrate both sides of it in 

interval 0 ≤ x ≤ L. Using orthogonality conditions (16) we obtain equation in time domain: 

    𝑤̈𝑖(𝑡) + 𝑎𝑖𝐷
𝛼𝑤𝑖(𝑡) = 𝑓𝑖(𝑡) ,   𝑖 = 1, 2, …   (17) 

where 

𝑎𝑖 =
𝜂𝜆𝑖

2

𝜚
 ,   𝑓𝑖(𝑡) =

(−1)𝑖−1𝑓(𝑡)

𝜚𝐴
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Using (1) we can get Laplace transform of the solution of (17) in the form: 

ℒ(𝑤𝑖(𝑡)) =
ℒ (𝑓𝑖(𝑡))

𝑠2 + 𝑎𝑖𝑠
𝛼

 

Applying Theorem 5.5 from [5] we get the following solution of the equation (17): 

𝑤𝑖(𝑡) = ∫ (𝑡 − 𝜏)
𝑡

0
𝐺(𝑡 − 𝜏)𝑓𝑖(𝑡)𝑑𝜏    (18) 

where 

𝐺(𝑡) = 𝐸2−𝛼,2(−𝑎𝑖𝑡
2−𝛼)    (19) 

Eαβ(t) is a two-parameter Mittag-Leffler function defined as: 

 𝐸𝛼,𝛽(𝑡) = ∑
𝑡𝑛

𝛤(𝑛𝛼 + 𝛽)

∞

𝑛=0

 

fractional Voigt model: 

Similarly as for Scott-Blair model, for fractional Voigt model (equation (12)) we get 

following equation in time domain: 

                             𝑤̈𝑖(𝑡) + 𝑎𝑖𝐷
𝛼𝑤𝑖(𝑡) + 𝑏𝑖𝑤𝑖(𝑡) = 𝑓𝑖(𝑡) ,   𝑖 = 1, 2, …  (20) 

where 

𝑏𝑖 =
𝐸𝑖𝜆𝑖

2

𝜚
 

As an application of the theorem 5.5 from [5], we get the solution of equation (20) in the 

form (18). It has the following shape: 

𝐺(𝑡) = ∑ ∑
(−𝑎𝑖)

𝑘(−𝑏𝑖)
𝑛(
𝑛+𝑘
𝑘
)

𝛤(2𝑛+(2−𝛼)𝑘+2)
∞
𝑘=0

∞
𝑛=0 𝑡2𝑛+(2−𝛼)𝑘  (21) 

fractional Maxwell model: 

Equation of motion in time domain for fractional Maxwell model (equation (13)) is given 

below: 

       𝐷2+𝛼𝑤𝑖(𝑡) + 𝑐𝑖𝑤̈𝑖(𝑡) + 𝑑𝑖𝐷
𝛼𝑤𝑖(𝑡) = 𝑔(𝑡) ,   𝑖 = 1, 2, …  (22) 

where 

𝑐𝑖 =
1

𝑎
 , 𝑑𝑖 =

𝜂𝜆𝑖
2

𝑎𝜚
  ,     𝑔(𝑡) =

(−1)𝑖−1

𝑎𝜚𝐴
(𝑓(𝑡) + 𝑎𝐷𝛼𝑓(𝑡)) 

Application of the theorem 5.6 (and example 5.13) from [5] gives us the solution of 

equation (22): 

     𝑤𝑖(𝑡) = ∫ (𝑡 − 𝜏)𝛼+1
𝑡

0
𝐺(𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏   (23) 

 

 



Vibrations in Physical Systems 2018, 29, 2018009 (6 of 8) 

where now 

 𝐺(𝑡) = ∑ ∑
(−𝑐𝑖)

𝑘 (−𝑑𝑖)
𝑛 (
𝑛+𝑘
𝑘
)

𝛤(2𝑛+2+𝛼+𝛼𝑘)
∞
𝑘=0

∞
𝑛=0 𝑡2𝑛+𝛼𝑘   (24) 

fractional Zener model: 

Similarly as for fractional Maxwell model we get the equation of motion for fractional 

Zener model (equation (14)): 

            𝐷2+𝛼𝑤𝑖(𝑡) + 𝑐𝑖𝑤̈𝑖(𝑡) + 𝑑𝑖𝐷
𝛼𝑤𝑖(𝑡) + 𝑒𝑖𝑤𝑖(𝑡) = 𝑔(𝑡) ,   𝑖 = 1, 2, … (25) 

where 

 𝑒𝑖 =
𝐸𝜆𝑖

2

𝑎𝜚
 

Again, solution of equation of motion (25) we get as an application of theorem 5.6  

from [5] in the form (23), where: 

                        𝐺(𝑡) = ∑ ∑ ∑ 𝑋𝑘,𝑛,𝑚
𝑛
𝑚=0

∞
𝑛=0

∞
𝑘=0 (𝑡)   (26) 

and 

𝑋𝑘,𝑛,𝑚(𝑡) =
(−𝑒𝑖)

𝑚 (−𝑑𝑖)
𝑚−𝑛 (−𝑐𝑖)

𝑘 (𝑛 + 𝑘)! 𝑡(𝑛+𝑘)𝛼+2𝑚+(2−𝛼)(𝑛−𝑚)

𝑚! (𝑛 − 𝑚)!  𝑘!  𝛤(𝛼(𝑛 + 𝑘) + 2𝑚 + (2 − 𝛼)(𝑛 − 𝑚) + 2 + 𝛼)
 

5. Results 

Here we give some numerical examples of the solutions of the equations (11)-(14) given 

by formulas (18) and (23) for functions G(t) defined in equations (19), (21), (24) and (26) 

for Scott-Blair, Voigt, Maxwell and Zener models respectively. Let us put ai = 1,  

bi = 1, ci = 1, di = 1, ei = 1, a = 1, t1 = 1 and t2 = 2 (Fig. 2), t2 = 10 (Fig. 3). 

Infinite sums in formulas (21), (24) and (26) were replaced by partial sums. Let us 

denote by SK,N or SN,K,N,M partial sums for series (21), (24) and (26) (capital letters denote 

higher bounds for sums with respect to index denoted by the same small letter). Higher 

bounds K,N,M were set in such a way, that 

max (|
𝑆𝑁+1,𝐾 − 𝑆𝑁,𝐾

𝑆𝑁,𝐾
| , |
𝑆𝑁,𝐾+1 − 𝑆𝑁,𝐾

𝑆𝑁,𝐾
|) < 0,01 

and analogously for finite sum SN, K, N, M. We have observed that higher bounds N, K, M, 

computed as described above, increase with t, and for 'big' t results could not been achieved 

in reasonable time. We are going to overcome this problem in the future by using more 

sophisticated methods to compute infinite sums numerically [8]. Integrals (18) and (23) 

were computed by trapezoidal rule with constant time step, sufficiently small. 
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Figure 1. Functions wi(t) for t2 = 2 for: (a) Scott-Blair model, (b) fractional Voigt model, 

(c) fractional Maxwell model, (d) fractional Zener model 

 

Figure 2. Functions wi(t) for t2=10 for: (a) Scott-Blair model, (b) fractional Voigt model, 

(c) fractional Maxwell model, (d) fractional Zener model 
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One observed that: 

 Bolded curves in Fig. 1 and Fig. 2 represent wi(t) for classical viscoelastic models. 

Values of wi(t) for Newton and Maxwell models are presented in a and c graphs from 

these figures, for Voigt and Zener models in b and d. After unloading stage wi(t) 

stabilize on some level for Newton and Maxwell models, while for Voigt and Zener 

models after unloading stage wi(t) oscillate around position of equilibrium, so 

classical viscoelastic models behave as expected [9]. 

 With increase of the order of fractional derivative α decrease amplitude of vibration, 

which is expected behaviour (α = 0 means no damping in the system, α = 1 means 

classical damping in the system). 

 Solutions wi(t) correctly reflect change in the moment t2 when load is removed 

(compare graphs in Fig. 1 and in Fig. 2). 

6. Conclusions 

Dynamic analysis of a bar with one end fixed and other free, loaded with force on its free 

end was done. Viscoelastic material of the bar was modelled by fractional models (Scot-

Blair, Voigt, Maxwell and Zener fractional models). Using Laplace transform and 

Rayleigh-Ritz methods, closed-form solutions were obtained and some numerical 

examples have been presented in this paper.  
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