PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pressure relief gas drainage in a fully mechanised mining face based on the comprehensive determination of "three zones" development height

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The gas emission from the goaf generates gas in the upper corner of the working face, and the return airflow exceeds safe limits. The identification of the reasonable level of the high-long borehole is the key factor to ensure the effectiveness of its extraction. On-site test at the 2308 working face of Licun Coal Industry of Lu’an Chemical Industry Group, the development of coal overlying strata fracture was studied through derivation of theoretical and empirical formulae, physical similarity experiment, and UDEC numerical simulation: this was then combined with in-situ microseismic monitoring to obtain the distribution characteristics of mining overburden “falling zone” and “overbreak zone” under the actual working conditions, and accurately design the high-level long borehole end hole layer. The results show that the height of the falling zone is 17.5 m to 20.5 m, and the overbreak zone is 43.5 m to 49.5 m. When the hole position is between 25 m and 30 m in the middle and lower part of the overbreak zone, the flow and concentration of gas extracted by drilling are high, and the pure amount of gas extracted by a single hole is increased by 53% (on average). The investigation of pressure relief gas extraction shows that throughout the mining period, the average gas concentration in the return airway is maintained below 0.36%, and the average gas concentration in the upper corner is kept within 0.48% (effective gas control). The research proves the rationality of the arrangement of the high-level long borehole horizon in the working face and provides a reference for the design of the borehole horizon in the future gas drainage and control in the goaf.
Rocznik
Strony
271--288
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Xi’an University of Science and Technology, China
autor
  • Xi’an University of Science and Technology, China
autor
  • Xi’an University of Science and Technology, China
autor
  • Sichuan University, China
  • Sichuan University, China
Bibliografia
  • [1] W. Tang, C. Zhai, J.Z. Xu, Y. Sun, Y.Z. Cong, Y.F. Zheng, The influence of borehole arrangement of soundlesscracking demolition agents(SCDAs) on weakening the hard rock [J]. Int. J. Min. Sci. Technol. 31 (02), 197-207(2021). DOI: https://doi.org/10.1016/j.ijmst.2021.01.005.
  • [2] J. Krawczyk, A preliminary study on selected methods of modeling the effect of shearer operation on methanepropagation and ventilation at longwalls [J]. Int. J. Min. Sci. Technol., 30 (05), 675-682 (2020).DOI: https://doi.org/10.1016/j.ijmst.2020.04.007.
  • [3] M.C. He, Q. Wang, Q.Y. Wu, Innovation and future of mining rock mechanics [J]. J. Rock Mech. Geotech. Eng.13 (01), 1-21 (2021). DOI: https://doi.org/10.1016/j.jrmge.2020.11.005.
  • [4] Y .Y. Lu, Y.K. Zhang, J.R. Tang, Q. Yao, Switching mechanism and optimisation research on a pressure-attitudeadaptive adjusting coal seam water jet slotter [J]. Int. J. Min. Sci. Technol. 32 (06), 1167-1179 (2022).DOI: https://doi.org/10.1016/j.ijmst.2022.09.005.
  • [5] L.Y. Shu, L. Yuan, Q.X. Li, W.T. Xue, N.N. Zhu, Z.S. Liu, Response characteristics of gas pressure under simultaneousstatic and dynamic load: Implication for coal and gas outburst mechanism [J]. Int. J. Min. Sci. Technol.33 (02), 155-171 (2023). DOI: https://doi.org/10.1016/j.ijmst.2022.11.005.
  • [6] Q.L. Zou, Z.H. Chen, Y.P. Liang, W.J. Xu, P.R. Wen, B.C. Zhang, H. Liu, F.J. Kong, Evaluation and intelligentdeployment of coal and coalbed methane coupling coordinated exploitation based on Bayesian network and cuckoosearch [J]. Int. J. Min. Sci. Technol. 32 (06), 1315-1328 (2022).DOI: https://doi.org/10.1016/j.ijmst.2022.11.002.
  • [7] D.Y. Fan, X.S. Liu, Y.L. Tan, X.B.Li, P. Lkhamsuren, Instability energy mechanism of super-large section crossingchambers in deep coal mines [J]. Int. J. Min. Sci. Technol. 32 (05), 1075-1086 (2022).DOI: https://doi.org/10.1016/j.ijmst.2022.06.008.
  • [8] H .H. Fang, C.S. Zheng, N. Qi, H.J. Xu, H.H. Liu, Y.H. Huang, Q. Wei, X.W. Hou, L. Li, S.L. Song, Couplingmechanism of THM fields and SLG phases during the gas extraction process and its application in numericalanalysis of gas occurrence regularity and effective extraction radius [J]. Pet. Sci. 19 (03), 990-1006 (2022).DOI: https://doi.org/10.1016/j.petsci.2022.01.020.
  • [9] S.K. Singh, B.P. Banerjee, S. Raval, A review of laser scanning for geological and geotechnical applications inunderground mining [J]. Int. J. Min. Sci. Technol. 33 (02), 133-154 (2023).DOI: https://doi.org/10.1016/j.ijmst.2022.09.022.
  • [10] M.Z. Gao, H.M. Li, Y. Zhao, Y.T. Liu, W.Q. Zhou, L.M. Li, J. Xie, J.Deng, Mechanism of micro-wetting of highlyhydrophobic coal dust in underground mining and new wetting agent development [J]. Int. J. Min. Sci. Technol.33 (01), 31-46 (2023). DOI: https://doi.org/10.1016/j.ijmst.2022.11.003.
  • [11] X.Q. He, C. Zhou, D.Z. Song, Z.L. Li, A.Y. Cao, S.Q. He, M. Khan, Mechanism and monitoring and early warningtechnology for rockburst in coal mines [J]. Int. J. Min. Met. Mater. 28 (07), 1097-1111 (2021).DOI: https://doi.org/10.1007/s12613-021-2267-5.
  • [12] Z. Liu, X. Zhong, H. Ren, et al., Redevelopment of Fractures and Permeability Changes after Multi-Seam Miningof Shallow Closely Spaced Coal Seams [J]. Archives of Mining Sciences 64 (4), 671 (2019).DOI:https://doi.org/10.24425/ams.2019.129376.
  • [13] M. Mynarczuk, M. Skiba, An Approach to Detect Local Tectonic Dislocations in Coal Seams Based on RoughnessAnalysis [J]. Archives of Mining Sciences 67 (4), 743 (2022). DOI:https://doi.org/10.24425/ams.2022.143685.
  • [14] M.G. Qian, J.L.Xu, Coal mining and strata movement [J]. Coal Journal 44 (04), 973-984 (2019).DOI: https://doi.org/10.13225/j.cnki.jccs.2019.0337.
  • [15] M.G. Qian, J.L. Xu, Research on the ‘O’ -shaped circle characteristics of mining-induced fracture distribution inoverlying strata [J]. Coal Journal (05), 20-23 (1998). DOI: https://doi.org/10.13225/j.cnki.jccs.1998.05.004.
  • [16] Y .F. Gao, W.P. Huang, G.L. Qu, B. Wang, X.H. Cui, Q.Z. Fan, Perturbation effect of rock rheology under uniaxialcompression [J]. J. Cent. South Univ. 24 (07), 1684-1695 (2017).DOI: https://doi.org/10.1007/s11771-017-3575-9.
  • [17] G .X. Xie, J.Z. Li, L. Wang, Y.Z. Tang, Mechanical characteristics and time-space evolution of stress shell of surroundingrock in stope floor [J]. Coal Journal 43 (01), 52-61 (2018).DOI: https://doi.org/10.13225/j.cnki.jccs.2017.0003.
  • [18] H .Y. Li, W.H. Wang, Q.X.Qi, L. Zhang, Study on space-time evolution law of mining-induced fractures based onfractal theory [J]. Coal Journal 39 (06), 1023-1030 (2014). DOI: https://doi.org/10.13225/j.cnki.jccs.2013.0027.
  • [19] W.H. Wang, Research on seepage law of mining overburden fracture based on fractal theory [J]. Coal Technology34 (09), 208-211 (2015). DOI: https://doi.org/10.13301/j.cnki.ct.2015.09.080.
  • [20] B.X. Song, L. Chen, F.W. Zhang, L. Chen, H.Y. Li, Fractal theory to study the evolution of mining fissures [J].Engineering Investigation 45 (01), 1-6 (2017).
  • [21] Z.X. Liu, S.N. Dong, D.W. Jin, X.M. Guo, Y.F. Liu, J. Yang, K. Guo, H.B. Shang, Formation mechanism andprevention of underground debris flow induced by support crushing and roof cutting in deep buried stope [J]. CoalJournal 44 (11), 3515-3528 (2019). DOI: https://doi.org/10.13225/j.cnki.jccs.2019.0366.
  • [22] B.A. Zhang, J.Y. Li, Y. Lu, C.H. Liu, Comparative analysis of prediction methods for height of water flowingfractured zone in overlying strata of goaf [J]. Chinese Journal of Geological Disasters and Prevention 27 (02),132-136 (2016). DOI: https://doi.org/10.16031/j.cnki.issn.1003-8035.2016.02.21.
  • [23] H .Y. Dai, P. Li, N. Marzhan, Y.G. Yan, C.L.Yuan, T. Serik, J.T.Guo, Y. Zhakypbek, K. Seituly, Subsidence controlmethod by inversely-inclined slicing and upward mining for ultra-thick steep seams [J]. Int. J. Min. Sci. Technol.32 (01), 103-112 (2022). DOI: https://doi.org/10.1016/j.ijmst.2021.10.003.
  • [24] J.G. Ning, J. Wang, Y.L. Tan, Q. Xu, Mechanical mechanism of overlying strata breaking and development offractured zone during close-distance coal seam group mining [J]. Int. J. Min. Sci. Technol. 30 (02), 207-215 (2020).DOI: https://doi.org/10.1016/j.ijmst.2019.03.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2df217d-990c-4bb7-b6f0-5e0bada956dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.