PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Time-resolved near-infrared spectroscopy is an optical technique which can be applied in tissue oxygenation assessment. In the last decade this method is extensively tested as a potential clinical tool for noninvasive human brain function monitoring and imaging. In the present paper we show construction of an instrument which allows for: (i) estimation of changes in brain tissue oxygenation using two-wavelength spectroscopy approach and (ii) brain perfusion assessment with the use of single-wavelength reflectometry or fluorescence measurements combined with ICG-bolus tracking. A signal processing algorithm based on statistical moments of measured distributions of times of flight of photons is implemented. This data analysis method allows for separation of signals originating from extra- and intracerebral tissue compartments. In this paper we present compact and easily reconfigurable system which can be applied in different types of time-resolved experiments: two-wavelength measurements at 687 and 832 nm, single wavelength reflectance measurements at 760 nm (which is at maximum of ICG absorption spectrum) or fluorescence measurements with excitation at 760 nm. Details of the instrument construction and results of its technical tests are shown. Furthermore, results of in-vivo measurements obtained for various modes of operation of the system are presented.
Twórcy
autor
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str., 02–109, Warsaw, Poland
autor
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str., 02–109, Warsaw, Poland
autor
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str., 02–109, Warsaw, Poland
autor
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str., 02–109, Warsaw, Poland
autor
  • Warsaw Praski Hospital, Department of Intensive Care and Anesthesiology, 67 Al. Solidarności Str., 03–401 Warsaw, Poland
autor
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str., 02–109, Warsaw, Poland
autor
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Ks. Trojdena Str., 02–109, Warsaw, Poland
Bibliografia
  • 1. F.F. Jobsis, “Noninvasive, Infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters”. Science 198, 1264–1267 (1977).
  • 2. S. Wray, M. Cope, D.T. Delpy, J.S. Wyatt, and E.O. Reynolds, , “Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non−invasive monitoring of cerebral oxygenation”, Biochim Biophys Acta. 933, 184–192 (1988).
  • 3. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults”, Neurosci. Lett. 154, 101–104 1993).
  • 4. A. Villringer and B. Chance, “Non−invasive optical spectroscopy and imaging of human brain function”, Trends In Neurosciences 20, 435–442 (1997).
  • 5. G. Litscher and G. Schwarz, Transcranial Cerebral Oximetry, Pabst Sci. Pub. Lengerich, 1997.
  • 6. A.F. Cannestra, I. Wartenburger, H. Obrig, A. Villringer, and A.W. Toga, “Functional assessment of Broca's area using near infrared spectroscopy in humans”, Neuroreport 14, 1961–5 (2003).
  • 7. H. Obrig and A. Villringer, “Beyond the visible – Imaging the human brain with light”, J. Cerebr. Blood F. Met. 23, 1–18 (2003).
  • 8. G. Schlaug, A. Benfield, A.E. Baird, B. Siewert, K.O. Lovblad, R.A. Parker, R.R. Edelman, and S. Warach, “The ischemic penumbra: operationally defined by diffusion and perfusion MRI”, Neurolog. 53, 1528–37 (1999).
  • 9. K.A. Miles, “Perfusion imaging with computed tomography: brain and beyond”, Eur Radiol. 16 Suppl 7, 37–43 (2006).
  • 10. E. Facco, P. Zucchetta, M. Munari, F. Baratto, A.U. Behr, M. Gregianin, A. Gerunda, F. Bui, M. Saladini, and G. Giron, “99mTc−HMPAO SPECT in the diagnosis of brain death” Intens. Care Med. 24, 911–7 (1998).
  • 11. H.H. Abu−Judeh, R. Parker, S. Aleksic, M.L. Singh, S. Naddaf, S. Atay, M. Kumar, W. Omar, H. El−Zeftawy, J.Q. Luo, and H.M. Abdel−Dayem, “SPECT brain perfusion findings in mild or moderate traumatic brain injury”, Nucl. Med. Rev. Cent. East Eur. 3, 5–11 (2000).
  • 12. U. Roelcke, “Imaging brain tumors with PET, SPECT, and ultrasonography”, Handb. Clin. Neurol. 104, 135–42 (2012).
  • 13. J.M. Gruner, R. Paamand, L. Hojgaard, and I. Law, “Brain perfusion CT compared with 15O−H2O−PET in healthy subjects”, EJNMMI Res. 1, 28 (2011).
  • 14. J.A. Wahr, K.K. Tremper, S. Samra, and D.T. Delpy, “Near−infrared spectroscopy: theory and applications”, J. Cardiothorac Vasc. Anesth. 10, 406–18 (1996).
  • 15. V. Quaresima, M. Ferrari, M.C.P. van der Sluijs, J. Menssen, and W. Colier, “Lateral frontal cortex oxygenation changes during translation and language switching revealed by non−invasive near−infrared multi−point measurements”, Brain Res. Bull. 59, 235–243 (2002).
  • 16. M. Diop, J.T. Elliott, K.M. Tichauer, T.Y. Lee, and K. St Lawrence, “A broadband continuous−wave multichannel near−infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets”, Rev. Sci. Instrum. 80, 054302 (2009).
  • 17. K. van Rossem, S. Garcia−Martinez, G. De Mulder, B. Van Deuren, K. Engelborghs, J. Van Reempts, and M. Borgers, “Brain oxygenation after experimental closed head injury. A NIRS study”, Adv. Exp. Med. Biol. 471, 209–15 (1999).
  • 18. Y. Murata, Y. Katayama, H. Oshima, T. Kawamata, T. Yamamoto, K. Sakatani, and S. Suzuki, “Changes in cerebral blood oxygenation induced by deep brain stimulation: study by near−infrared spectroscopy (NIRS)”, Keio J. Med. 49 Suppl 1, 61–3 (2000).
  • 19. R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbiec, “Selected applications of near infrared optical methods in medical diagnosis”, Opto−Electron. Rev. 12, 255–262 (2004).
  • 20. J.C. Hebden, S.R. Arridge, and D.T. Delpy, “Optical imaging in medicine: I. Experimental techniques”, Phys. Med. Biol. 42, 825–40 (1997).
  • 21. E.M. Sevick−Muraca, J.S. Reynolds, J. Lee, D. Hawrysz, A.B. Thompson, R.H. Mayer, R. Roy, and T.L. Troy, “Fluorescence lifetime imaging of tissue volumes using near− infrared frequency domain photon migration”, Photochem. Photobiol. 69, 66S−66S (1999).
  • 22. J. Zhao, H.S. Ding, X.L. Hou, C.L. Zhou, and B. Chance, “In vivo determination of the optical properties of infant brain using frequency−domain near−infrared spectroscopy”, J. Biomed. Opt. 10, 024028 (2005).
  • 23. M.S. Patterson, B. Chance, and B.C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurements of tissue optical properties”, Appl. Opt. 28,. 2331–2336 (1989).
  • 24. J. Hebden, R. Kruger, and K. Wong, “Time resolved imaging trough a highly scattering medium”, Appl. Opt. 30, 788–794 (1991).
  • 25. J. Hebden and K. Wong, “Time−resolved optical tomography”, Appl. Opt. 32, 372–380 (1993).
  • 26. R.R. Alfano, S.G. Demos, and S.K. Gayen, “Advances in optical imaging of biomedical media”, Ann. NY Acad. Sci. 820, 248–70; discussion 271 (1997).
  • 27. R.R. Alfano, S.G. Demos, P. Galland, S.K. Gayen, Y. Guo, P.P. Ho, X. Liang, F. Liu, L. Wang, Q.Z. Wang, and W.B. Wang, “Time−resolved and nonlinear optical imaging for medical applications”, Ann NY Acad. Sci. 838, 1428 (1998).
  • 28. H. Eda, I. Oda, Y. Ito, Y. Wada, Y. Oikawa, Y. Tsunazawa, M. Takada, Y. Tsuchiya, Y. Yamashita, M. Oda, A. Sassaroli, Y. Yamada, and M. Tamura, “Multichannel time−resolved optical tomographic imaging system”, Rev. Sci. Instrum. 70, 3595–3602 (1999).
  • 29. S. Okawa, A. Yano, K. Uchida, Y. Mitsui, M. Yoshida, M. Takekoshi, A. Marjono, F. Gao, Y. Hoshi, I. Kida, K. Masamoto, and Y. Yamada, “Phantom and mouse experiments of time−domain fluorescence tomography using total light approach”, Biomed Opt. Express 4, 635–51 (2013).
  • 30. W.M. Kuebler, A. Sckell, O. Habler, M. Kleen, G.E.H. Kuhnle, M. Welte, K. Messmer, and A.E. Goetz, “Noninvasive measurement of regional cerebral blood flow by near−infrared spectroscopy and indocyanine green”, J. Cerebr. Blood F. Met. 18, 445–456 (1998).
  • 31. J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A.D. Edwards, “Measurement of cerebral blood flow in newborn infants using near infrared spectroscopy with indocyanine green”, Pediatr. Res. 43, 34–9 (1998).
  • 32. D.W. Brown, P.A. Picot, J.G. Naeini, R. Springett, D.T. Delpy, and T.Y. Lee, “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets”, Pediatr. Res. 51, 564–70 (2002).
  • 33. J.T. Elliott, M. Diop, K.M. Tichauer, T.Y. Lee, and K. St Lawrence, “Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth−resolved near−infrared spectroscopy”, J. Biomed. Opt. 15, 037014 (2010).
  • 34. P. Desmettre, “Diagnosis and prevention of equine infectious diseases: present status, potential, and challenges for the future” Adv. Vet. Med. 41, 359–77 (1999).
  • 35. M. Hope−Ross, L.A. Yannuzzi, E.S. Gragoudas, D.R. Guyer, J.S. Slakter, J.A. Sorenson, S. Krupsky, D.A. Orlock, and C.A. Puliafito, “Adverse reactions due to indocyanine green”, Ophthalmology 101, 529–33 (1994).
  • 36. R. Springett, Y. Sakata, and D.T. Delpy, “Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green”, Phys. Med. Biol. 46, 2209–25 (2001).
  • 37. E. Keller, A. Nadler, H. Alkadhi, S.S. Kollias, Y. Yonekawa, and P. Niederer, “Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near−infrared spectroscopy and indocyanine green dye dilution”, Neuroimage 20, 828–39 (2003).
  • 38. C. Terborg, S. Bramer, S. Harscher, M. Simon, and O.W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near−infrared spectroscopy and indocyanine green”, J. Neurol. Neurosurg. Psychiatry 75, 38–42 (2004).
  • 39. A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed−side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time−resolved diffuse reflectance”, Neuroimage 24, 426–35 (2005).
  • 40. O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J.B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke”, J. Biomed. Opt. 15, 061708 (2010).
  • 41. A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner−Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source−detector separation”, J. Biomed. Opt. 16, 046011 (2011).
  • 42. A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non−invasive detection of fluorescence from exogenous chromophores in the adult human brain”, Neuroimage 31, 600–8 (2006).
  • 43. J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain”, Neurodegener. Dis. 5, 296–303 (2008).
  • 44. A. Jelzow, H. Wabnitz, H. Obrig, R. Macdonald, and J. Steinbrink, “Separation of indocyanine green boluses in the human brain and scalp based on time−resolved in−vivo fluorescence measurements”, J. Biomed. Opt. 17, 057003 (2012).
  • 45. D. Milej, A. Gerega, N. Zolek, W. Weigl, M. Kacprzak, P. Sawosz, J. Maczewska, K. Fronczewska, E. Mayzner−Zawadzka, L. Krolicki, R. Maniewski, and A. Liebert, “Time−resolved detection of fluorescent light during inflow of ICG to the brain−a methodological study”, Phys. Med. Biol. 57, 6725–42 (2012).
  • 46. A. Gerega, D. Milej, W. Weigl, M. Botwicz, N. Zolek, M. Kacprzak, W. Wierzejski, B. Toczylowska, E. Mayzner−Zawadzka, R. Maniewski, and A. Lieber, “Multi−wavelength time−resolved detection of fluorescence during the inflow of indocyanine green into the adult’s brain”, J. Biomed. Opt. 17, 087001 (2012).
  • 47. W. Weigl, D. Milej, A. Gerega, B. Toczylowska, M. Kacprzak, P. Sawosz, M. Botwicz, R. Maniewski, E. Mayzner−Zawadzka, and A. Lieber, “Assessment of cerebral perfusion in post−traumatic brain injury patients with the use of ICG−bolus tracking method”, Neuroimage 85, 555–565 (2014).
  • 48. M. Kacprzak, A. Liebert, P. Sawosz, N. Żołek, and R. Maniewski, “Time−resolved optical imager for assessment of cerebral oxygenation”, J. Biomed. Opt. 12, 034019 (2007).
  • 49. D. Milej, M. Kacprzak, N. Żołek, P. Sawosz, R. Maniewski, and A. Liebert, An Instrument for Monitoring Inflow and Washout of An Optical Contrast Agent into The Brain, in Information Technologies in Biomedicine, E. Pietka and J. Kawa Editors, pp. 85–90, Springer Berlin / Heidelberg: Berlin, 2010.
  • 50. D. Milej, M. Kacprzak, N. Zolek, A. Liebert, and R. Maniewski, “Advantages of fluorescence over diffuse reflectance measurements tested in phantom experiments with dynamic inflow of ICG”, Opto−Electron. Rev. 18, 208–213 (2010).
  • 51. A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fibre dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media”, J. Biomed. Opt. 8, 512–516 (2003).
  • 52. M.S. Patterson and B.W. Pogue, “Mathematical model for time−resolved and frequency−domain fluorescence spectroscopy in biological tissues”, Appl. Opt. 33, 1963–74 (1994).
  • 53. A. Liebert, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons”, Appl. Opt. 42, 5785–92 (2003).
  • 54. W. Becker, Advanced Time−Correlated Single Photon Counting Techniques, Chemical Physics Berlin Heidelberg: Springer−Verlag, 2005.
  • 55. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time−resolved multidistance near−infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons”, Appl. Opt. 43, 3037–3047 (2004).
  • 56. M. Jager and A. Kienle, “Non−invasive determination of the absorption coefficient of the brain from time−resolved reflectance using a neural network”, Phys. Med. Biol. 56, 139–144 (2011).
  • 57. N. Zolek, A. Liebert, D. Milej, M. Kacprzak, A. Torricelli, D. Contini, L. Spinelli, M. Caffini, L. Zucchelli, R. Cubeddu, A. Jelzow, O. Steinkellner, H. Wabnitz, S. Koch, J. Steinbrink, and W. Weigl, “Comparative study of algorithms to derive changes in hemoglobin concentrations from time domain near infrared spectroscopy measurements” in Eur. Conf. Biomed. Opt., Munich, 2011.
  • 58. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson−Engels, R.L. van Veen, H.J. Sterenborg, J.M. Tualle, H.L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protoco”, Appl. Opt. 44, 2104–2014 (2005).
  • 59. H. Obrig, T. Wolf, C. Doge, J.J. Hulsing, U. Dirnagl, and A. Villringer, “Cerebral oxygenation changes during motor and somatosensory stimulation in humans, as measured by near−infrared spectroscopy”, Adv. Exp. Med. Biol. 388, 219–224 (1996).
  • 60. V. Toronov, M.A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near−infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping”, Med. Phys. 27, 801–815 (2000).
  • 61. G. Strangman, J.P. Culver, J.H. Thompson, and D.A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation”, Neuroimage 17, 719–731 (2002).
  • 62. T.J. Huppert, R.D. Hoge, S.G. Diamond, M.A. Franceschini, and D.A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans”, Neuroimage 29, 368–382 (2006).
  • 63. M. Butti, D. Contini, E. Molteni, M. Caffini, L. Spinelli, G. Baselli, A.M. Bianchi, S. Cerutti, R. Cubeddu, and A. Torricelli, “Effect of prolonged stimulation on cerebral hemodynamic: a time−resolved fNIRS study”, Med. Phys. 36, 4103–4114 (2009).
  • 64. L. Holper, M. Biallas, and M. Wolf, “Task complexity relates to activation of cortical motor areas during uni− and bimanual performance: a functional NIRS study”, Neuroimage 46, 1105–1113 (2009).
  • 65. H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time−resolved near−infrared spectroscopy and imaging of the adult human brain”, Adv. Exp. Med. Biol. 662, 143–148 (2010).
  • 66. L. Gagnon, M.A. Yucel, M. Dehaes, R.J. Cooper, K.L. Perdue, J. Selb, T.J. Huppert, R.D. Hoge, and D.A. Boas, “Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS−fMRI measurements”, Neuroimage 59, 3933–3940 (2012).
  • 67. H. Karim, S.I. Fuhrman, P. Sparto, J. Furman, and T. Huppert, “Functional brain imaging of multi−sensory vestibular processing during computerized dynamic posturography using near−infrared spectroscopy”, Neuroimage 74C, 318–325 (2013).
  • 68. M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of a time−resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery”, J. Biomed. Opt. 17, 016002 (2012).
  • 69. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time−resolved diffuse reflectance using small source−detector separation and fast single−photon gating”, Phys. Rev. Lett. 100, 138101 (2008).
  • 70. M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A.D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non−contact time−resolved diffuse reflectance imaging at null source−detector separation”, Opt. Express 20, 283–290 (2012).
  • 71. P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time−gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimic local changes in oxygenation of the brain tissue”, Opto−Electron. Rev. 20, 309–314 (2012).
  • 72. J. Selb, D.K. Joseph, and D.A. Boas, “Time−gated optical system for depth−resolved functional brain imaging”, J. Biomed. Opt. 11, 044008 (2006).
  • 73. P. Poulet, W. Uhring, W. Hanselmann, R. Glazenborg, F. Nouizi, V. Zint, and W. Hirschi, “A time−gated near−infrared spectroscopic imaging device for clinical applications” in Proc. SPIE 8565, 85654M (2013).
  • 74. P. Sawosz, M. Kacprzak,W. Weigl, A. Borowska−Solonynko, P. Krajewski, N. Zolek, B. Ciszek, R. Maniewski, and A. Liebert, “Experimental estimation of the photons visiting probability profiles in time−resolved diffuse reflectance measurement”, Phys. Med. Biol. 57, 7973–7981 (2012).
  • 75. J.C. Hebden, A. Gibson, T. Austin, R.M. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three−dimensional optical tomography”, Phys. Med. Biol. 49, 1117–1130 (2004).
  • 76. M. Diop, K.M. Tichauer, J.T. Elliott, M. Migueis, T.Y. Lee, and K. St Lawrence, “Comparison of time−resolved and continuous−wave near−infrared techniques for measuring cerebral blood flow in piglets”, J. Biomed. Opt. 15, 057004 (2010).
  • 77. B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time−resolved diffuse optical methods”, Appl. Opt. 44, 1942–1947 (2005).
  • 78. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi−channel time−resolved system for functional near infrared spectroscopy”, Opt. Express 14, 5418–5432 (2006).
  • 79. L. Ostergaard, “Cerebral perfusion imaging by bolus tracking”, Top Magn. Reson. Imaging 15, 3–9 (2004).
  • 80. L. Ostergaard, “Principles of cerebral perfusion imaging by bolus tracking”, J. Magn. Reson. Imaging 22, 710–717 (2005).
  • 81. J. Woitzik, P.G. Pena−Tapia, U.C. Schneider, P. Vajkoczy, and C. Thome, “Cortical perfusion measurement by indocyanine−green videoangiography in patients undergoing hemicraniectomy for malignant stroke”, Stroke 37, 1549–5151 (2006).
  • 82. A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, “Wavelength−resolved measurements of fluorescence lifetime of indocyanine green”, J. Biomed. Opt. 16, 067010 (2011).
  • 83. A. Oldag, M. Goertler, A.K. Bertz, S. Schreiber, C. Stoppel, H.J. Heinze, and K. Kopitzki, “Assessment of cortical hemodynamics by multichannel near−infrared spectroscopy in steno−occlusive disease of the middle cerebral artery”, Stroke 43, 2980–2985 (2012).
  • 84. J.T. Elliott, D. Milej, A. Gerega, W. Weigl, M. Diop, L.B. Morrison, T.Y. Lee, A. Liebert, and K. St Lawrence, “Variance of time−of−flight distribution is sensitive to cerebral blood flow as demonstrated by ICG bolus−tracking measurements in adult pigs”, Biomed. Opt. Express 4, 206–218 (2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2d9e18d-75ec-4d98-bd96-e0ee97f43d46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.