PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optimisation of the fertilisation process for selected field spreaders

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fertiliser application is one of the most important operations in agricultural production. It helps to increase the quality and quantity of the crop. However, the addition of too many ingredients or an unbalanced nutrient profile has a negative effect on crops. It is therefore important to apply fertiliser rationally and to achieve the correct level and uniformity of fertiliser distribution. The aim of this study was to develop a new model for lateral distribution uniformity during fertilisation. The tests were carried out under field conditions in a winter wheat crop. The quality of operation of three two-disc fertiliser spreaders at a travel speed of 1.22 m·s-1 was investigated. A Lagrange interpolation model was used to analyse the data. The accuracy of models was very high (R2 > 0.985). The models developed can be used in practice to facilitate control of the spreader operation, which will help to ensure uniform fertiliser distribution.
Twórcy
  • Wrocław University of Environmental and Life Sciences, Wrocław, Poland
  • Wrocław University of Environmental and Life Sciences, Wrocław, Poland
  • Wrocław University of Environmental and Life Sciences, Wrocław, Poland
  • University of Life Sciences in Lublin, Lublin, Poland
  • Wrocław University of Environmental and Life Sciences, Wrocław, Poland
  • Wrocław University of Environmental and Life Sciences, Wrocław, Poland
  • Wrocław University of Environmental and Life Sciences, Wrocław, Poland
Bibliografia
  • 1.Wang, Z.; Hassan, M.U.; Nadeem, F.; Wu, L.; Zhang, F.; Li, X. Magnesium Fertilization Improves Crop Yield in Most Production Systems: A Meta-Analysis. Front. Plant Sci. 2020, 10, 1727.
  • 2.Liu, Q.; Xu, H.; Yi, H. Impact of Fertilizer on Crop Yield and C:N:P Stoichiometry in Arid and Semi-Arid Soil. Int. J. Environ. Res. Public Health 2021, 18, 4341.
  • 3.Kakar, K.; Xuan, T.D.; Noori, Z.; Aryan, S.; Gulab, G. Effects of Organic and Inorganic Fertilizer Application on Growth, Yield, and Grain Quality of Rice. Agriculture 2020, 10,
  • 4.Krasilnikov, P.; Taboada, M.A.; Amanullah. Fertilizer Use, Soil Health and Agricultural Sustainability. Agriculture 2022, 12, 462. https://doi.org/10.3390/agriculture12040462.
  • 5.Beard, T.; Maaz, T.; Borrelli, K.; Harsh, J.; Pan, W. Nitrogen Affects Wheat and Canola Silica Accumulation, Soil Silica Forms, and Crusting. J. Environ. Qual. 2018, 47 (6). https://doi.org/10.2134/jeq2018.01.0052.
  • 6.Wan, L.-J.; Tian, Y.; He, M.; Zheng, Y.-Q.; Lyu, Q.; Xie, R.-J.; Ma, Y.-Y.; Deng, L.; Yi, S.-L. Effects of Chemical Fertilizer Combined with Organic Fertilizer Application on Soil Properties, Citrus Growth Physiology, and Yield. Agriculture 2021, 11, 1207.
  • 7.Wiggenhauser, M.; Bigalke, M.; Imseng, M.; Keller, A.; Rehkämper, M.; Wilcke, W.; Frossard, E. Using Isotopes to Trace Freshly Applied Cadmium through Mineral Phosphorus Fertilization in Soil-Fertilizer-Plant Systems. Sci. Total Environ. 2019, 648. https://doi.org/10.1016/j.scitotenv.2018.08.127.
  • 8.Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical Fertilizers and Their Impact on Soil Health. In Microbiota and Biofertilizers; Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R., Eds.; Springer: Cham, Switzerland, 2021; Volume 2, pp. 1–20.
  • 9.Food and Agriculture Organization of the United Nations. The international Code of Conduct for the sustainable use and management of fertilizers. 2019. Rome. ISBN 978-92-5-131705-1.
  • 10.Yousaf, M.; Li, J.; Lu, J.; Ren, T.; Cong, R.; Fahad, S.; Li, X. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci. Rep. 2017, 7, 1270.
  • 11.Antonangelo, J. A.; Firmano, R. F.; Alleoni, L. R. F.; Oliveira, A.; Zhang, H. Soybean Production under Continuous Potassium Fertilization in a Long-Term No-Till Oxisol. Agron. J. 2019, 111 (5). ). https://doi.org/10.2134/agronj2019.02.0084.
  • 12.Colaço, A. F.; Molin, J. P. Variable Rate Fertilization in Citrus: A Long Term Study. Precis. Agric. 2017, 18 (2). ). https://doi.org/10.1007/s11119-016-9454-9.
  • 13.Thaper, R. K.; Fulton, J. P.; McDonald, T. P.; Fasina, O. O. Potential of Fertilizer Segregation during Application Using Spinner Disc Spreader. Precis. Agric. 2022, 23 (1). https://doi.org/10.1007/s11119-021-09828-5
  • 14.Przywara, A.; Santoro, F.; Kraszkiewicz, A.; Pecyna, A.; Pascuzzi, S. Experimental Study of Disc Fertilizer Spreader Performance. Agriculture 2020, 10, 467. .https://doi.org/10.3390/agriculture10100467.
  • 15.Gao, J.; Zhang, J.; Zhang, F.; Hou, Z.; Zhai, Y.; Ge, L. Analysis of Movement Law and Influencing Factors of Hill-Drop Fertilizer Based on SPH Algorithm. Appl. Sci. 2020, 10 (5). https://doi.org/10.3390/app10051643.
  • 16.Przywara, A. The impact of structural and operational parameters of the centrifugal disc spreader on the spatial distribution of fertilizer. Agric. Agric. Sci. Procedia 2015, 7,
  • 17.Andrade, A.D.; Araújo e Silva Ferraz, G.; Machado de Barros, M.; De Oliveira Faria, R.; Moreira da Silva, F.; Sarri, D.; Vieri, M. Characterization of the Transverse Distribution of Fertilizer in Coffee Plantations. Agronomy 2020, 10, 601. https://doi.org/10.3390/agronomy10040601.
  • ISO 1985. ISO 5690/1: Equipment for distributing fertilizers - test methods - Part 1: Full width fertilizer distributors.
  • ISO 1984. ISO 5690/2: Equipment for distributing fertilizers - Test methods - Part 2: Fertilizer distributors in lines.
  • ASABE: S341:2018. Procedure for measuring distribution uniformity and calibrating broadcast spreaders. American Society of Agricultural Engineers.
  • 18.Fulton, J. P.; Thaper, R. K.; Virk, S. S.; McDonald, T. P.; Fasina, O. O. Effect of Vane Shape on Fertilizer Distribution for a Dual-Disc Spinner Spreader. Appl. Eng. Agric. 2020, 36 (5). https://doi.org/10.13031/AEA.13634.
  • 19.Roodi, S. M.; Abbaspour-Fard, M. H.; Aghkhani, M. H. Improvement of Centrifugal Spreader Performance in Order to Spread the Pellet Fertilizer. Agric.  Mech. Syst. Res. 2020, 20 (73).
  • 20.Cool, S. R.; Pieters, J. G.; Van Acker, J.; Van Den Bulcke, J.; Mertens, K. C.; Nuyttens, D. R. E.; Van De Gucht, T. C.; Vangeyte, J. Determining the Effect of Wind on the Ballistic Flight of Fertiliser Particles. Biosyst. Eng. 2016, 151. https://doi.org/10.1016/j.biosystemseng.2016.10.011.
  • 21.Papadopoulos, G.; Arduini, S.; Uyar, H.; Psiroukis, V.; Kasimati, A.; Fountas, S. Economic and Environmental Benefits of Digital Agricultural Technologies in Crop Production: A Review. Smart Agric. Technol. 2024. https://doi.org/10.1016/j.atech.2024.100441.
  • 22.Li, J.; Nie, Z.; Chen, Y.; Ge, D.; Li, M. Development of Boom Posture Adjustment and Control System for Wide Spray Boom. Agriculture 2023, 13, 2162. https://doi.org/10.3390/agriculture13112162
  • 23.Cieniawska, B.; Parafiniuk, S.; Kluza, P. A.; Otachel, Z. Matching the Liquid Atomization Model to Experimental Data Obtained from Selected Nozzles. Appl. Sci. 2023, 13 (7). ). https://doi.org/10.3390/app13074433.
  • 24.Ding, Y.; Li, H.; Gao, J.; Yu, H.; Wang, Y.; Feng, D. Parameter Optimization of Finger Clip Plate Garlic Seed-Metering Device. Agriculture 2023, 13, 2071. https://doi.org/10.3390/agriculture13112071
  • 25.Martínez-Rodríguez, A. D. I.; Gómez-Águila, V. M. I.; Soto Escobar, M. M. I. Model and Software for the Parameters Calculation in Centrifugal Disk of Fertilizer Spreaders. Revista Ciencias Técnicas Agropecuarias 2021, 30.
  • 26.Yuan, F.; Yu, H.; Wang, L.; Shi, Y.; Wang, X.; Liu, H. Parameter Calibration and Systematic Test of a Discrete Element Model (DEM) for Compound Fertilizer Particles in a Mechanized Variable-Rate Application. Agronomy 2023, 13, 706. https://doi.org/10.3390/agronomy13030706.
  • 27.Du, J.; Yang, Q.; Xia, J.; Li, G. Discrete Element Modeling and Verification of an Outer Groove Wheel Fertilizer Applicator with Helical Teeth. Trans. ASABE 2020, 63 (3). https://doi.org/10.13031/TRANS.13289.
  • 28.Liu, J. S.; Gao, C. Q.; Nie, Y. J.; Yang, B.; Ge, R. Y.; Xu, Z. H. Numerical Simulation of Fertilizer Shunt-Plate with Uniformity Based on EDEM Software. Comput. Electron. Agric. 2020, 178. https://doi.org/10.1016/j.compag.2020.105737.
  • 29.Marcal, A. R. S.; Cunha, M. Development of an Image-Based System to Assess Agricultural Fertilizer Spreader Pattern. Comput. Electron. Agric. 2019, 162. https://doi.org/10.1016/j.compag.2019.04.031.
  • 30.Sharipov, G. M.; Heiß, A.; Eshkabilov, S. L.; Griepentrog, H. W.; Paraforos, D. S. Variable Rate Application Accuracy of a Centrifugal Disc Spreader Using ISO 11783 Communication Data and Granule Motion Modeling. Comput. Electron. Agric. 2021, 182. https://doi.org/10.1016/j.compag.2021.106006.
  • 31.Abbou-ou-cherif, E. M.; Piron, E.; Chateauneuf, A.; Miclet, D.; Lenain, R.; Koko, J. On-the-Field Simulation of Fertilizer Spreading: Part 1 - Modeling. Comput. Electron. Agric. 2017, 142. https://doi.org/10.1016/j.compag.2017.09.006.
  • 32.Abbou-ou-cherif, E. M.; Piron, E.; Chateauneuf, A.; Miclet, D.; Lenain, R.; Koko, J. On-the-Field Simulation of Fertilizer Spreading: Part 2 - Uniformity Investigation. Comput. Electron. Agric. 2017, 141. https://doi.org/10.1016/j.compag.2017.07.004.
  • 33.Abbou-Ou-Cherif, E. M.; Piron, E.; Chateauneuf, A.; Miclet, D.; Villette, S. On-the-Field Simulation of Fertilizer Spreading: Part 3 - Control of Disk Inclination for Uniform Application on Undulating Fields. Comput. Electron. Agric. 2019, 158. https://doi.org/10.1016/j.compag.2019.01.050.
  • 34. Bulgakov, V.; Adamchuk, O.; Pascuzzi, S.; Santoro, F.; Olt, J. Experimental Research into Uniformity in Spreading Mineral Fertilizers with Fertilizer Spreader Disc with Tilted Axis. Agron. Res. 2021, 19 (1). https://doi.org/10.15159/AR.21.025.
  • 35. Cunha, J. P. A. R.; Filho, R. S. Broadcast Distribution Uniformity of Fertilizer with Centrifugal Spreaders Used in Variable Rate Application. Eng. Agric. 2016, 36 (5). https://doi.org/10.1590/1809-4430-eng.agric.v36n5p928-937/2016.
  • 36. Kim, J. M.; Woo, D.; Kim, T. Analysis on Fertilizer Application Uniformity of Centrifugal Fertilizer Distributor. Biosyst. Eng. 2018, 43 (4).
  • 37. Shi, Y.; Chen, M.; Wang, X.; Zhang, Z.; Odhiambo, M. O.; Ding, W. Numerical Simulation and Optimization of Scattering Performance of a Conical Centrifugal Variable-Rate Fertilizer Spreader. Int. Agric. Eng. J. 2018, 27 (1).
  • 38. Liu, X.; Ding, Y.; Shu, C.; Liu, W.; Wang, K.; Du, C.; Wang, X. Design and Experiment of Spiral Disturbance Cone Centrifugal Fertilizer Apparatus. Nongye Gongcheng Xuebao/Transactions Chinese Soc. Agric. Eng. 2020, 36 (2). https://doi.org/10.11975/j.issn.1002-6819.2020.02.006.
  • 39. Sun, J.; Chen, H.; Duan, J.; Liu, Z.; Zhu, Q. Mechanical Properties of the Grooved-Wheel Drilling Particles under Multivariate Interaction Influenced Based on 3D Printing and EDEM Simulation. Comput. Electron. Agric. 2020, 172. https://doi.org/10.1016/j.compag.2020.105329.
  • 40. Rußwurm, F.; Osinenko, P.; Streif, S. Optimal Control of Centrifugal Spreader. In IFAC-PapersOnLine; 2020; Vol. 53. https://doi.org/10.1016/j.ifacol.2020.12.239.
  • 41. Koko, J.; Virin, T. Optimization of a Fertilizer Spreading Process. Math. Comput. Simul. 2009, 79 (10). https://doi.org/10.1016/j.matcom.2009.03.001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2d84e89-bced-4e60-8c9b-144df1dc5801
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.