PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Residual life estimation of structural beam using experimental and numerical modal analysis methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A structural beam is a common element in many mechanical structures such as ship propeller shaft, crane boom, and aircraft wings. In the present paper experimental and numerical modal analysis are carried out for estimating the damage, geometric location of the damage, severity of damage and residual life of structural beam to prevent unexpected failures of mechanical structures. Experimental and numerical modal analysis results for healthy and cracked beam are compared for validation of numerical methodology used in the present paper. Experimental modal analysis is performed on both healthy and cracked beam with the help of impact hammer, acceleration sensor and FFT (Fast Fourier Transformer) analyzer associated with EDM (Engineering Data Management) software. Modal tests are conducted using impact method on selected locations of the entire healthy and cracked beam to find the first three natural frequencies, which are used to detect the presence of damage and geometric location of the damage. Three parametric studies are carried out to know the effect of crack depth, crack location and crack orientation on the natural frequencies of the cracked beam. Finally, the residual life of a healthy and cracked beam was estimated using Basiquin’s equation and finite element analysis software called ANSYS 18.1.
Rocznik
Strony
135--146
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, GVP-Satya Institute of Technology and Management, Vizianagaram, India
  • Department of Mechanical Engineering, Gayatri Vidya Parishad College of Engineering (Autonomous), Visakhapatnam-530048, India
Bibliografia
  • 1. Adarsh A. (2015). Fatigue behavior and life predictions of forged steel and powder metal connecting rods. International Journal on Emerging Technologies, Vol. 6, No. 1, pp. 56-60
  • 2. A. Rytter. (1993). Vibration Based Inspection of Civil Engineering Structures. Ph. D. dissertation. Department of Building Technology and Structural Engineering, Aalborg University, Denmark, pp. 193
  • 3. Dimarogonas A.D., Paipetis S.A. (1983). Analytical methods in rotor dynamics, Springer, Netherlands
  • 4. Zizheng S., Xiaoying Z., Yiming Z. (2019). Cracking elements method for simulating complex crack growth. J. Appl. Comput. Mech. Vol. 5, No. 3, pp. 552-562
  • 5. Elshamy M., Crosby W.A., Elhadary M. (2018). Crack detection of cantilever beam by natural frequency tracking using experimental and finite element analysis. Alexandria Engineering Journal, Vol. 57, No. 4, pp. 3755-3766
  • 6. Walunj P.S., Chouguleb V.N., Anirban C. M. (2015). Investigation on modal parameters of rectangular cantilever beam using experimental modal analysis. Materials Today: Proceedings, Vol. 2, No. 4, pp. 2121-2130
  • 7. Khalkar V., Ramachandran S. (2017). Paradigm for natural frequency of an un-cracked cantilever beam and its application to cracked beam. ARPN Journal of Engineering and Applied Sciences, Vol. 12, No. 6, pp. 1714-1729
  • 8. Kumar P., Bhaduri S., Kumar A. (2016). Vibration analysis of cantilever beam: an experimental study. International Journal for Research in Applied Science & Engineering Technology, Vol. 4, No. 2, pp. 361-369
  • 9. Pragnesh K., Dipal Patel., Vipul Patel A. (2014). Theoretical and software based comparison of cantilever beam: modal analysis. International Journal of Innovative Research in Advanced Engineering, Vol. 1, No. 5, pp. 75-79
  • 10. Chaphalkar S.P., Subhash N.K., Arun M.M. (2015).Modal analysis of cantilever beam structure using finite element analysis and experimental analysis. American Journal of Engineering Research, Vol. 4, No. 10, pp. 178-185
  • 11. Sadettin O. (2007). Analysis of free and forced vibration of a cracked cantilever beam. NDT E Int., Vol. 40, No. 6, pp. 443-450
  • 12. Nikil J.P. (2014). Vibrational analysis of portable crane. International Journal of Engineering Research and Technology, Vol. 3, No. 5, pp. 471-473
  • 13. Mirko S.M., Ivana V.V., Katarina S.M., Natasa, T., Stevan M.M. (2018). Residual life estimation of cracked aircraft structural components. FME Transactions, Vol. 46, No. 1, pp. 124-128
  • 14. leonard F., Lanteigne J., Lalonde S. (2001). Free vibration behaviors of a cracked cantilever beam and crack detection. Mechanical Systems and Signal Processing, Vol. 5, No. 3, pp. 529-548
  • 15. Nahvi H., Jabbari M. (2005). Crack detection in beams using experimental modal data and finite element model. Int. J. Mech. Sci., Vol. 47, No. 10, pp. 1477-1497
  • 16. Jiankong. (2014). Crane residual life estimation method based on artificial neural networks. BioTechnology: An Indian Journal, Vol. 10, No. 11, pp. 5674-5681
  • 17. Hajializadeh D., OBrien E. J., Conno A. J. O. (2017). Virtual structural health monitoring and remaining life prediction of steel bridges. Canadian Journal of Civil Engineering, Vol. 44, No. 4, pp. 264-273
  • 18. Aiko F., Junji K. (2004). Identification of structural damage based on vibration responses. 13th World Conference on Earthquake Engineering, Canada, paper no 134
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2d78851-5daa-40e1-8a8f-f0005a0852e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.