PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and Properties of Natural Cellulose Fibres from

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Otrzymywanie i właściwości folii celulozowych z włókien łykowych
Języki publikacji
EN
Abstrakty
EN
Natural cellulose fibres from Broussonetia papyrifera (L.) Vent. (BP) bast were systematically investigated in this paper. To begin with, BP fibres were successively extracted from BP bast by four different degumming methods, among which the microwave-assisted method exhibited high efficiency. It was found that non-cellulose substances were sufficiently removed or reduced after the degumming process, but the cellulose I structure had not changed from bast to fibres based on the XRD and FTIR results. Meanwhile the BP fibres exhibited high crystallinity (75 ~ 77%), high breaking strength (2.19 ~ 2.39 cN/dtex) and a remarkable moisture region (6.3 ~ 8.7%), but low breaking elongation (1.0 ~ 2.1%). All those results indicated that the BP fibres had properties resembling those of traditional natural cellulose fibres (e.g. cotton and flax); therefore they could be viewed as a promising alternative source for natural cellulose bundle fibres.
PL
Artykuł poświecono systematycznym badaniom naturalnych włókien celulozowych z Broussonetia Papyrifera (BP). Włókna ekstrahowano z włókien łykowych BP poprzez 4 rożne metody odpreparowania pomiędzy z których metoda za pomocą zastosowania ultradźwięków pozwoliła na uzyskanie wysokiej wydajności. Stwierdzono, że nie celulozowe substancje były dostatecznie usunięte lub zredukowane po procesie odpreparowania. Dzięki badaniom XRD i FITR można było wykazać, że struktura celulozy (I) nie zmieniła się pomiędzy włóknami łykowymi i otrzymanymi z nich wyrobami. dalsze badania wykazały źe włókna BP maja wysoką krystaliczność (75 - 77%), wysoką wytrzymałość(2.19 - 2.39 cN/dtex) i znaczną pochłanialność wilgoci (6.3 - 8.7%) natomiast małe wydłużenie przy zerwaniu (1.0 - 2.1%). Wszystkie te wyniki wskazują,że włókna BP posiadają właściwości przypominające właściwości tradycyjnych, naturalnych włókien celulozowych (np. bawełny i lnu). Dlatego też badane włok-na można uważać jako alternatywne źródło naturalnych włókien celulozowych.
Rocznik
Strony
24--28
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • P. R. China, Qingdao, Qingdao University, Colleges of Textile and Clothing
  • P. R. China, Qingdao, Qingdao University, Growing Base for State Key Laboratory, Laboratory of New Fiber Materials and Modern Textile
autor
  • P. R. China, Qingdao, Qingdao University, Colleges of Textile and Clothing
  • P. R. China, Qingdao, Qingdao University, Growing Base for State Key Laboratory, Laboratory of New Fiber Materials and Modern Textile
autor
  • P. R. China, Qingdao, Qingdao University, Colleges of Textile and Clothing
  • P. R. China, Qingdao, Qingdao University, Growing Base for State Key Laboratory, Laboratory of New Fiber Materials and Modern Textile
autor
  • USA, Davis, University of California, Biological and Agricultural Engineering Department Zhang Xiansheng
  • P. R. China, Qingdao, Qingdao University, Colleges of Textile and Clothing
autor
  • P. R. China, Qingdao, Qingdao University, Growing Base for State Key Laboratory, Laboratory of New Fiber Materials and Modern Textile
autor
  • P. R. China, Qingdao, Qingdao University, Colleges of Textile and Clothing
  • P. R. China, Qingdao, Qingdao University, Growing Base for State Key Laboratory, Laboratory of New Fiber Materials and Modern Textile
Bibliografia
  • 1. Fahrney K, Boonnaphol O, Keoboulapha B. Indigenous management of paper mulberry (Broussonetia papyrifera) in swidden rice fields and fallows in northern Laos. In: Paper presented at the regional workshop on indigenous strategies for intensification of shifting cultivation in Southeast Asia. Bogor, Indonesia, 1997: 23-27.
  • 2. Saito K, et al. Broussonetia papyrifera (paper mulberry): its growth, yield and potential as a fallow crop in slash-andburn upland rice system of northern Laos. Agroforestry Systems 2009; 76, 3: 525-532.
  • 3. Huang W, Lei X-C. Utilization of a New Material-Guangyechu for Pulping Industry. China Pulp & Paper 2005; 11: 39-41.
  • 4. Bosu PP, et al. The impact of Broussonetia papyrifera (L.) vent. on community characteristics in the forest and forest– savannah transition ecosystems of Ghana. African Journal of Ecology 2013: 51, 4: 528–535.
  • 5. Wang S. The potential development and economic value of new varieties of trees—Broussonetia papyrifera. Modern Seed Industry 2006; 6: 35-36.
  • 6. Nei XZ, Liu SH, Zhang ZF. APSP paper pulp preparation of Broussonetia papyrifera. Paper Making of Hubei 2005; 3: 2-4.
  • 7. Wang LJ, Li L, Ma JZ. The viscose filament and its preparation of Broussonetia papyrifera. In: Chinese Patent, 2006.
  • 8. Sirkar SC, Saha NN. Hydrated cellulose from jute fibre. Nature 1946; 157: 839. 9
  • 9. Gassan J, Bledzki AK. Alkali treatment of jute fibers: Relationship between structure and mechanical properties. Journal of Applied Polymer Science 1999; 71, 4: 623-629.
  • 10. Wang HM, et al. Removing Pectin and Lignin During Chemical Processing of Hemp for Textile Applications. Textile Research Journal 2003; 73; 8: 664-669.
  • 11. Ouajai S, Shanks RA. Solvent and enzyme induced recrystallization of mechanically degraded hemp cellulose. Cellulose 2006; 13; 1: 31-44.
  • 12. Akin DE, et al. Enzyme-retting of flax and characterization of processed fibers. Journal of Biotechnology 2001; 89, 2-3: 193-203.
  • 13. Reddy N, Yang Y. Properties of natural cellulose fibers from hop stems. Carbohydrate Polymers 2009; 77, 4: 898-902.
  • 14. Reddy N, Yang Y. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresource Technology 2009; 100, 14: 3563-3569.
  • 15. Reddy N, Yang Y. Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems. Bioresource Technology 2008; 99, 7: 2449-2454.
  • 16. Reddy N, Yang Y. Preparation and Characterization of Long Natural Cellulose Fibers from Wheat Straw. Journal of Agricultural and Food Chemistry 2007; 55, 21: 8570-8575.
  • 17. Karunanithy C, Muthukumarappan K. Optimization of switchgrass and extruder parameters for enzymatic hydrolysis using response surface methodology. Industrial Crops and Products 2011; 33, 1: 188-199.
  • 18. Yang Y, Reddy N. Biothermoplastics from soyproteins by steaming. Industrial Crops and Products 2012; 36, 1: 116-121.
  • 19. Jiang G, et al. Structure and properties of regenerated cellulose fibers from different technology processes. Carbohydrate Polymers 2012; 87, 3: 2012-2018.
  • 20. Wang D, et al. The research of hemp as textile materials. Journal of Textile Research 1989; 10, 5: 4.
  • 21. Qu L-J, et al. The mechanism and technology parameters optimization of alkaliH2O2 one-bath cooking and bleaching of hemp. Journal of Applied Polymer Science 2005; 97, 6: 2279-2285.
  • 22. Wang HM, Wang X. Hemp processing with microwave and ultrasonic treatments. Quality Textiles for Quality Life, Vols 1-4. 2004, Manchester: Textile Inst. 779-782.
  • 23. Gupta D, Sen K, Sen S. Degumming of Decorticated Ramie for Textile Purposes. Cellulose Chemistry and Technology 1976; 10: 285-291.
  • 24. Morton WE, Hearle JWS. Physical properties of textile fibres (3rd ed.). Manchester: Textile Institute, 1993.
  • 25. Yao M, Zhou JF, Huang SZ. Textile Materials (3nd ed.). Beijing, China: China Textile Press, 2003.
  • 26. Batra SK. Handbook of fiber science and technology. Other long vegetable fibers. Vol. 4. 1998, New York: M. Lewin & E.M. Pearce (Eds.).
  • 27. Dyer J, Daul GC. Rayon fibers. In: M. Lewin & E. M. Pearce(Eds.) Handbook of Fiber Science and Technology: Fiber chemistry. 1985. p. 774-777.
  • 28. Majibur Rahman Khan M, et al. Graphitization behavior of iodine-treated Bombyx mori silk fibroin fiber. Journal of Materials Science 2009; 44; 16: 4235-4240.
  • 29. Liu D, et al. Composition and structure study of natural Nelumbo nucifera fiber. Carbohydrate Polymers 2009; 75, 1: 39-43.
  • 30. Muller CMO, Laurindo JB, Yamashita F. Effect of cellulose fibers on the crystallinity and mechanical properties of starchbased films at different relative humidity values. Carbohydrate Polymers 2009; 77, 2: 293-299.
  • 31. Gierlinger N, et al. In Situ FT-IR Microscopic Study on Enzymatic Treatment of Poplar Wood Cross-Sections. Biomacromolecules 2008; 9, 8: 2194-2201.
  • 32. Wang X, et al. Microstructure and mechanical properties of graphite fiberreinforced high-purity aluminum matrix composite. Journal of Materials Science 2009; 44, 16: p. 4303-4307.
  • 33. Wang L, Han G, Zhang Y. Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydrate Polymers, 2007; 69, 2: 391-397.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c2d5526b-8aed-40f9-806c-39fee20faffe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.